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Abstract

A numerical method has been developed for solving the complete compressible Navier-Stokes

equations. The method is applicable for Direct Numerical Simulations (DNS) and Large-Eddy

Simulations (LES) and was used here to study the evolution of three-dimensional disturbances

in the laminar and turbulent near wake of axisymmetric bluff bodies with a blunt base in

supersonic flows. The main objective of this research is to investigate the time dependent

behavior of these disturbances and their influence on and interaction with the global flow field.

The equations are solved in a cylindrical coordinate system using finite difference approximations

of fourth-order accuracy in axial and radial directions and and a fourth-order accurate explicit

Runge-Kutta scheme for the time integration. A pseudo-spectral method is employed in the

azimuthal direction. Direct Numerical Simulations (DNS) were performed for a subsonic free

stream Mach number of M... = 0.2 and for supersonic free stream Mach numbers of Moo, = 1.2

and M... = 2.46. Large-Eddy Simulations (LES) were carried out for a subsonic free stream

Mach number of Mo, = 0.2 and a global Reynolds number of ReD = 2,000 and for a supersonic

free stream Mach number of M.. = 2.46 and global Reynolds numbers of PeD = 30,000 and

ReD = 100,000. Comparison of the instantaneous flow field for subsonic calculations with

water channel experiments and incompressible simulations show good qualitative agreement.

An absolute instability with regard to helical disturbances was found for the subsonic flow at

ReD = 1,000 and for the supersonic flows for Moo = 1.2 and ReD Ž 4,000 and for M.. = 2.46

and ReD Ž 30,000. Small disturbances appear in the flow field near the corner of the base. As

the disturbances are propagating downstream they grow and form intense vortical structures.

These structures have a strong influence on the flow field, which results in a drastic change of

the base pressure distribution and thus of the base drag.
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Chapter 1

Introduction

The aerodynamic drag of bodies of revolution with a blunt base is greatly affected by the

low pressure immediately downstream of the base. Especially for the case of supersonic flight,

even small changes in the flow behavior of the wake may affect the performance of the entire

flight vehicle, e.g., missiles, rockets, or projectiles. Flight tests with projectiles (U.S. Army M549

projectile) have shown that for supersonic free stream Mach numbers the fraction of aerodynamic

drag due to the low base pressure can be as high as 35 percent (compare figure 1.1) of the total

drag. This suggests that controlling the near-wake flow can have a significant influence on the

aerodynamic drag of bluff bodies with a blunt base.
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Figure 1.1: Total drag and base drag for axisymmetric bluff bodies with a blunt base in free

flight experiments [from Rollstin (1987)].

For this reason, numerous research efforts, experimental, theoretical, and numerical, have

focused on investigating the flow field in the near wake of blunt bodies. At the early stages

the main issue of these investigations has been the prediction of the base drag for different

geometries in order to provide necessary information for the design of new aerodynamic objects
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(such as projectiles, rockets, supersonic planes, etc.). In more recent years, several techniques for

reducing the base drag have been suggested and investigated, such as boat-tailing, base bleed,
base burning, base combustion, etc. [see, for example, Sahu et al.(1985), Nietubicz and Gibeling

(1993), Sahu and Heavey (1995), and Mathur and Dutton (1996a,b)]. It has been found, that
with all these techniques the base drag can be reduced by a considerable amount.

RRw agvrzancx_

, . .i oA.- . .. ..-0

Figure 1.2: Schematic of the flow field of the near wake of axisymmetric bluff bodies with a
blunt base aligned with a supersonic free stream (from Herrin & Dutton (1994c)].

A schematic diagram of the time-averaged supersonic flow field of the near wake of an
axisymmetric bluff body with a blunt base is shown in figure 1.2. A boundary layer separates at

the base corner and forms an axisymmetric shear layer. Outside the subsonic layer, expansion
Iwaves occur that cause the free stream to bend towards the axis. Further downstream the

free stream is realigned by recompression waves. A region of recirculation, associated with
low pressure, is formed immediately downstream of the base. Typically the length of this
recirculation region is on the order of one to three base diameters, depending on the global
Reynolds number (%e) and the free stream Mach number (Mw~).

1.1 Technical Background

1.1.1 Investigations of the Time-Averaged Flow Field

At first, for investigating the fundamental physics of the near-wake behavior experiments were

used almost exclusively. However, wind tunnel experiments suffer from the difficulty of properly

supporting the (axisymmetric) base model so as not to cause undue effects on the flow field

behind the base. [Chapman (1951)] conducted experiments measuring the base pressure behind

a backward facing step and a circular cylinder for supersonic flows. He found that the support

of the model, which in his case was supported from the rear, in general has a large effect on the

base pressure if the sting diameter is larger than 30 percent of the model diameter. Another
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experimental study of the effect of rear sting supports on the base pressure was conducted

by [Donaldson (1955)]. He observed that the base pressure dropped monotonically with an

increasing sting diameter up to 80 percent of the base diameter. Even a support rod with a

diameter of 20 percent of the base diameter had a significant effect on the base pressure, in

contrast to the findings of [Chapman (1951)].

Because of the problems arrising from the rear support of the model, several other methods

of support have been investigated in the following years. For example, [Dayman (1963)] investi-

gated the effect of supporting wires on the wakes of spheres and cones. He concluded that any

wire capable of supporting the model has a significant effect on the flow field. Thus, the only

support that might not significantly influence the wake flow field is from the upstream position

of the body, which has been used in most of the experimental research efforts in the following

years [see, for example, [Dutton & Addy (1993)], Herrin & Dutton (1991, 1994a-c), and Mathur

& Dutton (1995, 1996a,b)]. In addition, local pressure and velocity measurements in supersonic

wakes have proven to be very difficult. The pressure along the body can be measured by pressure

tabs, but measurements within the flow field axe very difficult, because a probe has to be inserted

into the flow and thus the flow field is altered. That is the reason why different, nonintruding

methods such as laser Doppler velocimetry have been developed. In many recent experimen-

tal studies [see, for example, [Avidor & Schneiderman (1975)], [Herrin & Dutton (1991)]] near

axisymmetric wakes have been investigated using this method.

In recent years, many experimental investigations also focused on modifying the base flow,

in particular the base pressure, using several different techniques such as boat-tailing, base

bleed, base burning, and base combustion. Valentine & Przirembel (1970), for example, in-

vestigated the effect of base injection on a turbulent axisymmetric wake at Mach 4. The ef-

fect of base injection on the base pressure was dependent on the injection technique. They

observed an increase in the base pressure ratio of nearly 100 percent. Another way of in-

fluencing the base pressure was assessed by [Neale et al.(1978)]. They studied the effect of

axisymmetric external compression fields simulating external burning on the base pressure for

a cylindrical body in a supersonic flow at Mach 3. Their conclusion was that the base drag

could be completely eliminated by external burning. There have been many more research

efforts investigating the effects of these techniques to modify the base flow [see, for exam-

ple, [Cortwright & Schroeder (1951)], [Reid & Hastings (1959)], [Clayden & Bowman (1968)],

[Bowman & Clayden (1968)], [Hubbartt et al. (1981)], Ding et al. (1992)]. These experiments

have shown that there are potentially considerable rewards for altering the flow field. However,

it is still not understood why certain measures are more effective than others and what the

optimal parameters should be. The reason for this is that the fundamental physical phenomena

that are responsible for the effect of the base flow modifications are not yet understood.

More recently, Dutton and his coworkers started comprehensive experimental investigation

of the near wake of an axisymmetric body with a blunt base in a supersonic flow at Mach 2.46

[see, for example, Herrin & Dutton (1991, 1994a-c), and Mathur & Dutton (1995, 1996a,b)].

In their research, they have used pressure taps along the base to measure the base pressure
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and spark-schlieren photography and oil-streak visualization to qualitatively assess the flow

field. Special emphasis was placed on designing the experimental facilities such that a highly

uniform, axisymmetric flow field could be obtained without any interference of the support

and the wind tunnel walls on the wake region. It was found that the base pressure is virtually

constant along the base. In addition to the base pressure measurements they used Laser Doppler

Velocimetry (LDV) to determine the time-averaged flow field and rms values of the turbulent

fluctuations. The measurements of turbulent fluctuations in the flow field revealed that the

highest turbulence levels occur within the free shear layer that separates the recirculating region

from the free stream. Dutton and his co-workers have also investigated the effects of different

techniques of drag reduction, including base bleed and boat-tailing. Their results show that

all these techniques can significantly lower the base drag. At the same time, all investigated

measures of drag reduction also lowered the level of the turbulent fluctuations in the free shear

layer. This indicates that there might be a connection between the turbulent energy within the

shear layer and the pressure drag of the aerodynamic body.

In the same publication where [Chapman (1951)] discussed his experimental measurements

of compressible wakes, he also presented a semi-empirical theory for calculating the flow field of

laminar, viscous wake flow. Chapman had concluded that inviscid theory was not insufficient to

accurately model this flow field. He was able to predict the base pressure for two dimensional

wakes with reasonable accuracy, however, he did not succeed in predicting the base pressure

for axisymmetric wakes without rear sting support. Another semi-empirical theory for the

prediction of turbulent flows over a two dimensional backward facing step and an axisymmetric

body with rear sting support was presented by [Korst (1956)]. However, the theory was also not

applicable for bodies without a rear sting. A similar theory was developed by [McDonald (1965)]

which also gave fair agreement with experimental results for the base pressure of axisymmtric

bodies with a rear support. A newer theory, developed by [Mueller (1968)], was able to calculate

the base pressure for axisymmetric bodies without rear support fairly well. But he still had to

rely on experimental data to find the recompression location for a given shape, which made it

impossible to predict the base pressure for a new geometry. Several theories have been developed

later trying to predict the recompression location (e.g. [Addy (1970)]), but they still had to rely

on experimental data.

With the development of increasingly powerful supercomputers, numerical simulations of

complex flows, such as the axisymmetric wake, have become more and more feasible. The big

advantage of numerical simulations is that problems associated with wind tunnel interference,

model support, probe intrusion, etc., are not present. In addition to possibly providing fur-

ther understanding of the relevant physics involved, these calculations were motivated by the

considerable challenge that this complicated flow field provides for computational fluid dynami-

cists. The computational challenge arises mainly from the combination of shock waves, thin free

shear layers, boundary layers, and recirculating regions; associated with this are highly disparate

length scales and local regions of very high gradients. Reliable and realistic computations can

therefore only be performed if the high gradients can be adequately resolved. Furthermore,
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supersonic wake flows in almost all practical applications are turbulent, requiring adequate tur-

bulence models. In practically all previous numerical efforts, only the steady flow field was

calculated. Those computations were based on the Reynolds-Averaged Navier-Stokes equations

(RANS) employing typically algebraic or one- and two-equation turbulence models, such as, for

example, the algebraic eddy viscosity model of Baldwin and Lomax, the two-equation k -

model, or the k - w model.

Numerous research efforts on calculating turbulent supersonic wake flows have been reported

in the literature. The Advisory Group for Aerospace Research and Development (AGARD)

formed a group to review methods to predict nozzle afterbody flows in 1982. A summary of the

results is given by Putnam & Bissinger (1985). It was concluded that at the time Navier-Stokes

simulations were able to predict flow fields accurately up to the point of separation, but then

became unreliable. Since then there has been an increased interest in predicting wake flows using

numerical techniques. [Sullins et al. (1982)], for example, calculated the turbulent mean flow of

a two dimensional compressible wake with and without base injection. For the determination

of the turbulent flow they used a zero equation relaxation eddy viscosity model. Comparing

the pressure along the centerline of the wake showed fair agreement with experimental results.

Unfortunately no comparison for the pressure distribution over the base was provided.

The flow of an axisymmetric afterbody at a free stream Mach number of 1.343 with and

without a centered jet at the base was investigated by Sahu & Nietubicz (1984) using a thin

layer approximation of the Navier-Stokes equation. They predicted streamlines for the near wake

region and also the pressure distribution over the base. They found that the centered jet reduces

the base pressure for the case of a high velocity jet. No comparison with experimental data was

provided. A detailed verification of Navier-Stokes calculations was done by Nietubicz & Sturek

(1988). The results show very good agreement with experiments for most flow parameters in-

cluding the base drag. The study showed that current Navier-Stokes codes are able to calculate

supersonic wake "flows and find agreement with experimental observations in terms of certain

global features fairly well. However, in all cases certain parameters for the employed turbulence

models have to be set according to experimental results. Numerical computations of supersonic

base flow with special emphasis on turbulence modeling were presented by [Sahu (1992)]. Com-

paring the results obtained by a thin layer approximation of the Navier-Stokes equations using

two algebraic eddy viscosity models and a two-equation k-e model, he found that both algebraic

turbulence models predicted an incorrect base pressure, while the k-e model showed very good

agreement with experimental results. However, the turbulence energy distribution in the wake

did not agree with the experimental results of [Herrin & Dutton (1991)].

In spite of the these shortcomings of the RANS calculations, recent applications have at-

tacked increasingly difficult situations. As control of wake flows is now being considered as a

means of drag reduction, numerical simulations have been performed to investigate, for exam-

ple, the effects of base bleed [see, for example, [Sahu et al. (1985)], [Sahu & Heavey (1995)], and

[Danberg & Nietubicz (1992)]] and base burning [see, for example, [Nietubicz & Sturek (1988)]].

In all simulations, the results show a correct trend for the drag reduction when compared with
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experimental results. However, in some cases, even global flow field characteristics such as the

centerline velocity are not in good agreement with experiments. This indicates that there are

still important aspects of the physics which are not captured by the used models. Therefore

empirically determined constants have to be introduced which need to be adjusted for the given

geometry and thus do not allow prediction of flow fields for different geometries.

1.1.2 Investigations of the Time-Dependent Flow Field

All investigations mentioned above focused on calculating the time-averaged turbulent mean flow

in the near wake of an axisymmetric body. If, however, the supersonic wake flow field is domi-

nated by large structures (like its incompressible counterpart), it is necessary to investigate the

time dependent evolution of the flow field. For example, the time dependent behavior of a two

dimensional supersonic transitional wake has been investigated by [Chen et al. (1989)] [see also

[Chen et al. (1990)]] using temporal Linear Stability Theory (LST) and Direct Numerical Sim-

ulations (DNS). In their research they found that the wake is subject to temporal instabilities.

Disturbances in the shear layer get amplified and form large structures which dominate the flow

field further downstream. Increasing the Mach number has a damping effect on these instabili-

ties. It is as yet unclear if the supersonic axisymmetric wake flow is also subject to instabilities

(temporal or spatial, convective or absolute) similar to its incompressible counterpart.

It is well known that for incompressible wakes the dynamics of large (coherent) struc-

tures play a dominant role in the local and global behavior of the flow. This evidence was

found from both experimental investigations and numerical simulations and was confirmed by

theoretical studies. For incompressible flow past bluff bodies, it has been well established

that the existence of absolute and global instabilities is responsible for the development of

the large structures [see, for example, [Huerre & Monkewitz (1990)]]. Using numerical simu-

lations, absolute and global instabilities were found for a two-dimensional bluff body with a

blunt base by [Hannemann & Oertel (1989)] and for an axisymmetric body with a blunt base

by [Schwarz (1996)]. The absolutely or globally unstable modes for the axisymmetric case are

of a helical nature. For compressible wakes, especially at supersonic speeds, however, relatively

little is known about the dynamical behavior of the large structures in turbulent flows or, in

particular, if absolute or global instabilities exist. This is true for supersonic flows in general

and for axisymmetric wakes in particular.

Due to the lack of guidance from experimental investigations, no successful computational

or theoretical attempts have been made in the past to study the unsteady, dynamical behavior

of laminar, transitional, or turbulent supersonic axisymmetric wake flows. For the subsonic

(incompressible) case, there is considerable evidence that the evolution of the large structures is

due to the hydrodynamic instability of the (time-averaged) mean flow and that the development

of these structures can be captured by stability theory. Experimental results for incompress-

ible turbulent mixing layers, two-dimensional turbulent wakes, and axisymmetric wakes and

comparisons with stability theory have shown that certain key features, such as dominant fre-
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quencies, mode shapes (amplitude distributions), and streamwise spacing (wave lengths) of the
structures can be well predicted by linear stability theory [see, for example, [Wygnanski (1994)]
and [Marasli et al. (1989)]]. These investigations support the notion that hydrodynamic insta-

bilities give rise to the generation and development of the large structures. The dynamical
behavior of these structures is responsible for the strong unsteady flow behavior in the wake.

Thus, in reality, there is no steady turbulent wake flow, even when small-scale (high-frequency)
fluctuations are not taken into consideration. Rather, the flow is highly unsteady, dominated
by large-amplitude and, relative to the small scales, low-frequency fluctuations. Because of the
nonlinear interaction between the various fluctuation components, the actual mean flow may be

strongly dependent on the composition of the fluctuating parts of the flow field. In addition, it
has been shown that, with artificial forcing, existing components (structures) can be modified or
new components (structures) created and, as a consequence, that the mean flow can be strongly
altered [see, for example, [Wygnanski (1994)] and [Marasli et al. (1989)]].

Due to the difficulties of the experiments, until recently it was unclear if large structures are
present in supersonic wake flows or if they play a similarly dominating role. Recent experimental
findings indicate that large structures indeed exist for the case of two-dimensional supersonic
wakes [see, for example, Smith & Dutton (1968)]. Some quantitative evidence of the existence

of dominant large structures in supersonic axisymmetric wake flows has been provided by the
experiments of Demetriades (1968), who investigated the unsteady nature of the flow field. The
amplitude spectra in his results display distinct peaks at certain (relatively low) frequencies,

thus indicating the presence of dominant structures. If large structures are indeed dominat-
ing the near wake flow field, it is not surprising that the mean flow fields strongly depend on

experimental conditions and, even for the same facility, can vary with minor changes of the ex-
perimental parameters. Also, for this reason, it is not surprising that current turbulence models
for calculating mean flows using Reynolds-averaged Navier-Stokes formulations are performing
poorly for these flows. Time dependent methods like Large-Eddy Simulations (LES) would be
more adequate to capture the strongly time dependent behavior of the flow field. Chances to
arrive at better turbulence models (for Reynolds-Averaged Navier-Stokes) are rather slim un-
less the physical and dynamical behavior of the large structures are better understood and this
knowledge is implemented in the turbulence modeling.

1.2 Present Research

One way to achieve more insight into the dynamical behavior of the supersonic axisymmetric
wake flow is to investigate the development of disturbances in laminar, transitional and turbulent
flows. By determining the mechanisms that govern the behavior of large disturbances at the
onset to turbulence one might gain more understanding about the behavior of the fully turbulent
flow. This can be further supported by comparing the time dependent behavior of the laminar
flow with that of the turbulent flow. As a first step, the question needs to be answered, if an

absolute or a global instability also exists for the supersonic wake flow. For this reason, in the
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present research the evolution of artificially generated disturbances has been investigated for

laminar and for turbulent flow fields. Direct Numerical Simulations (DNS) and Large-Eddy

Simulations (LES) have been employed for the investigation of the time dependent behavior of

the supersonic axisymmetric wake flow. All simulations are based on solving the complete set of

the compressible Navier-Stokes equations (spatially filtered for LES) in a cylindrical coordinate

system.

r,y
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Figure 1.3: Region of interest.

The region of interest for the given problem is the near wake of the axisymmetric body

as shown in figure 3.1. The last part of the boundary layer approaching the base corner was

included in the calculation. This allowed the introduction of controlled disturbances through

"a circular blowing and suction slot on the body into the boundary layer. As the initial step,

"a laminar axisymmetric steady flow field was calculated. This flow field was then artificially

disturbed either by blowing and suction through a circular slot on the body, or by a local pulse

within the recirculating region. Then the time dependent evolution of the entire flow in response

to the artificially generated disturbances was monitored. For the given flow situation, air can

be treated as a calorically perfect gas, resulting in a constant heat capacity (cp) and a constant

Prandtl number (Pr).

One of the main interests in this research was the interaction between the recirculation

region and the external flow which are connected by a shear layer. As mentioned above, it is

known that for subsonic incompressible flows, large structures form in the shear layer and play

a dominant role in the local and global behavior of the wake flow and, consequently, have a

strong effect on the drag. However, for supersonic compressible wake flows the role of large

structures in the dynamical flow behavior and in particular their influence on the base pressure

is not well understood. The ultimate goal of the present research is to contribute towards the

understanding of the dynamical behavior of the large structures and their effect on the global

flow behavior.



Chapter 2

Governing Equations, Initial and

Boundary Conditions

As pointed out in the literature review, previous investigations have focused on finding a time-

averaged solution for turbulent axisymmetric wake flows at supersonic speeds. In almost all these

research efforts the resulting flow field was assumed to be axisymmetric. Therefore, typically

a set of the compressible axisymmetric Reynolds-averaged Navier-Stokes equations was used

as the governing equations. In some cases, these were further simplified by using thin-layer

approximations. In the present work the main emphasis was on the time-dependent evolution

of the near wake flow field, which does not necessarily have to be axisymmetric. In fact, for

the case of the subsonic wake flow the instantaneous flow field and sometimes even the time-

averaged flow field does not exhibit axisymmetry [see, for example, [Schwarz (1996)]]. Therefore,

the governing equations chosen for the present investigation are the complete three-dimensional

unsteady compressible Navier-Stokes equations. Since the given geometry is axisymmetric the

equations are solved in a cylindrical coordinate system.

Three different sets of the equations are being used according to the different tasks. For the

determination of laminar axisymmetric flow fields, the equations are reduced to the axisymmet-

ric compressible Navier-Stokes equations (see section 2.2). The fully three-dimensional flow field

for lower Reynolds number flows (laminar or transitional) is calculated by solving the complete

three-dimensional unsteady compressible Navier-Stokes equations (see section 2.3). For the so-

lution of turbulent flows at higher Reynolds numbers Large-Eddy Simulation (LES) is employed,

where the three-dimensional equations are filtered in space in order to resolve only structures

that are larger than a specified threshold (see section 2.4).

11
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2.1 Nondimensionalization

All variables in the given problem are nondimensionalized. The length scale chosen for the

problem is the diameter D of the axisymmetric body. Thus,

X* r*

x=D ; r= (2.1a)

The velocity components are nondimensionalized by the free stream velocity Uoo

V* 
V

vx Vr v; (2.1b)

Temperature, density, viscosity, and heat conductivity are nondimensionalized by their values

in the free stream:

T* p_ P t*
T = T- ; P= Poo ; P= oo ; 9 =-W. (2.1c)

This automatically leads to the following nondimensionalization for time, pressure and energy:
Uooct* p*_ e*(.d

t = ---•- ; p = p *o--o ; e = e-* (2.1d)
D Po_00 ý-

The global Reynolds number, the Prandtl number and the free stream Mach number are defined

by
PeD- ;poUD /zLoocp UOM (2.1e)IPoo 29c M, aco

where the speed of sound in the free stream is given by

aoo= V-yRiToo, (2.1f)

and
'y RL=cp -cv. (2.1g)

cv

The coefficient of the conduction term in the energy equation is given by the product of the

Peclet number and the Eckert number

N = PeEc = (- 1)PrReDM02,, (2.1h)

where Pe = ReDPr ; = U2 
(2.1i)

2.2 Axisymmetric Calculations

2.2.1 Equations

For the calculation of axisymmetric flow fields, the unsteady axisymmetric compressible Navier-

Stokes equations are solved. The equations are used in conservative formulation and are ex-

pressed in a cylindrical coordinate system. Then, they can be written in the following vector

form
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! + BS+ j+ P= o, (2.2a)
at- ax ar

where

A= X •(2.2b)

Pvr

kpe

( PVz
pVx + p + 'rxBpx +TrX (2.2c)

vx(pe + p) - -2 + vxTrxx + VrTrx

Pvr

Pvxvr + Trx (2.2d)

Pv• + P + Trr
ýVr (pe +- p) -~ -1F 2 +VxTrx +- vr'rrr

and

Pvxvr + Tr V (2.2e)S= r + 'rrr - TO00

Vr (pe + p) -12 - Vx Trx +• VrTrr)

The stress tensor components (rij) for axisymmetric flow are defined by [see, for example,

[Bird et al. (1960)]]
TXX = 1 R- [ 202x + Tr + ' (2.3a)

2 pý Ox a7  Vr
Trr 2 p RD [x - r + a' (2.3b)

TOO 3RD L2 "' -+ r - 27 , (2.3c)

and

ST Pe [O +v 1vr (2.3d)Txr Tr -- Re D t ar -9- 1xJ

The energy equation is used in the form of a conservation equation for the total energy (e),

which is defined by
e= - T T+ 1v. (2.3e)

The viscosity of air is assumed to be a function of temperature, according to Sutherland's law

[see, for example, [White (1991)]], which is given by

p(T) = T where 111K (2.4)(\• ,w e = so
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The same relationship holds for the temperature dependence of the thermal conductivity, because

the Prandtl number is assumed to be constant. Since air is treated as a calorically perfect gas,

the equation of state is given by [see, for example, [Thumm (1991)]]

pT (2.5)

2.2.2 Integration Domain

The domain for numerical integration of the axisymmetric equations is shown in figure 2.1. It

extends from a point x0 on the body, past the base to a point x, sufficiently far downstream of

the base, such that the recirculation region is fully enclosed (typically 3 to 20 diameters behind

the base). In the radial direction it starts at the axis of symmetry (r = 0) and extends typically

2 to 10 body diameters away from the body.

r k free stream boundary
------------------------------------------

inflow
boundary

wall outflow
boundary

wall

axis of symmetry X

Figure 2.1: Integration domain for the axisymmetric equations.

2.2.3 Boundary Conditions

The integration domain for the axisymmetric problem includes five physical boundaries, as is

shown in figure 2.1. These boundaries and the boundary conditions that are prescribed are

listed below.

Inflow boundary

At the inflow boundary all flow variables (p, v., vr, T, and p) are prescribed. In the

subsonic layer the pressure (p) is extrapolated from the field assuming a constant pressure

in streamwise direction.

Outflow boundary

At the outflow boundary the second derivative in axial direction for all primary flow

variables (p, pvx, pvr, and pe) is set to zero. This boundary condition has been introduced



CHAPTER 2. GOVERNING EQUATIONS, INITIAL AND BOUNDARY CONDITIONS 15

by Fasel(1976) and was found to allow disturbances to travel through the boundary without

major reflections.

Walls

At the walls, all velocities are set to zero.

Vx=0 ; V =0 (2.6a)

For the calculation of a steady flow field the body is assumed to be adiabatic. Thus, at

the horizontal wall it follows
1-r =0, (2.6b)

and at the vertical wall
-= 0. (2.6c)

For the calculation of an unsteady flow field, the body temperature is kept constant. Thus

OT = 0. (2.6d)

at

Axis of symmetry

Since the flow field is assumed to be axisymmetric, at the axis of symmetry it follows that

'9v___._ 0 == 0p = 0 ; -- = O. (2.6e)
09r 09 r= r Oýr

Free stream boundary

At the free stream boundary, three different boundary conditions are applied, depending

on the free stream Mach number of the problem. A detailed description of the free stream

boundary conditions is given in appendix B.

Initial condition

As an initial condition for the calculation of the steady axisymmetric flow field, the sim-
ilarity solution for a compressible flat plate boundary layer is used. The radial velocity

distribution is calculated by integrating the steady continuity equation. For the calculation

of an unsteady axisymmetric flow field, a previously calculated steady flow field is used as

initial condition.

2.3 Three-dimensional Calculations

2.3.1 Equations

The fully three-dimensional flow field is calculated by solving the complete unsteady three-

dimensional compressible Navier-Stokes equations. As for the axisymmetric flow field, the equa-

tions are expressed in conservative formulation in a cylindrical coordinate system. Again they

can be written in the vector form

8A- + 0_i, O, (2.7a)
5t- +,9x C a raG r
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where now

pvx

A= PVr , (2.7b)

pe

pVx

Pv2 + p + 7xx

B Pvxvr + Trx (2.7c)
PVxVo + 'TOx

vX (pe + p) - -22 + VxTxx + VrTrx + VoTox

Pvr

pVxVr + Trx

2
(P= + p + rTrr (2.7d)

PVrVo + Tro
vr (pe + p) - 19 8T-

pVO
PVxVo + TOx

PVrVO + Tro , (2.7e)

pv02 + p + T7ot9 OT -vT-ývo(pe +p) - F-N-f -M + Xox -+ VrrrO + Vo7'o9

and

Pvr

pvxvr + Trx

Pvr PVO +Trr-'Too (2.7f)
2 PVrVO + 27-ro

vr (pe + p) - T-r + 07 x rr +V7r

For a three-dimensional flow field, the stress tensor components in a cylindrical coordinate

system are defined as follows.

IL r, av, 2(. _ 2 u _2F vx Ovr l Ovo Vr=ReD L (V3 V)] = 3 eD [ a Ox O r + r- -O r (2.8a)

2 2 1 2 pOvx 2OVT lxOv vr]
Trr -- 2eDL -rV3 = 3 DOx Or + (2.8b)

D -"- 3L eD Or r + 0 '

2_V V p [Ov Ov,, +1v v

Txr Tx [ Pe [Or Ox]' (2.8d)T• = • = eD LOr + x.]
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To 'X [0vo 1 09vx (2.8e)"- D 19X v r 10

and

Tor=rro [r [ D1+- I -- _ + I. (2.8f)
PeDL 0r r r j ReD a Or r r oJ

As before, air is treated as a calorically perfect gas and the total energy term and the

temperature dependence of the viscosity are defined in the same way, as shown in equation 2.5

(see section 2.2).

2.3.2 Integration Domain

The integration domain, as shown in figure 2.2, includes part of the boundary layer on the

axisymmetric body and extends downstream beyond the recirculation region (typically 3 to 20

diameters downstream of the base).

1r,)' free stream boundary

/ / \

inflow \ e /
boundary Z

outflow
boundary

s I
< walls x

Figure 2.2: Integration domain for the three-dimensional equations.

2.3.3 Boundary Conditions

As can be seen in figure 2.2, the integration domain for the three-dimensional problem includes

four boundaries. The boundaries and the prescribed boundary conditions are listed as follows.

Inflow boundary

For the three-dimensional (unsteady) calculations, all variables at the inflow boundary

are specified. The only exception is the pressure in the subsonic layer, where the first

derivative of the pressure in axial direction is set to zero.

Outflow boundary

As for the axisymmetric calculations, at the outflow boundary the second derivatives in

axial direction of all primary flow variables are set to zero.
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Walls

At the walls all velocities are set to zero

vx=O ; v'=0 ; vO=O (2.9a)

The temperature on the walls is held constant based on the assumption that the body

cannot change temperature on the time scale of the disturbances. Thus

8TO--T = 0 (2.9b)

The zero-velocity boundary condition is applied at the wall except on the circular section

of blowing and suction, which is used for disturbance generation. This is described in more

detail in section 3.7.

Free stream boundary

The boundary conditions at the free stream are similar to the axisymmetric case. As before,

three different kinds of boundary conditions are applied at the free stream boundary,

according to the free stream Mach number (Moo). The three different boundary conditions

are described in more detail in appendix B.

Initial condition
A previously calculated steady axisymmetric flow field is used as the initial condition.

2.4 Large-Eddy Simulations

2.4.1 Spatially Filtered Three-Dimensional Equations for LES

At sufficiently high Reynolds numbers the flow field eventually becomes turbulent. In that case,

Direct Numerical Simulations become very memory and CPU time intensive. In order to be able

to calculate the flow field for a turbulent Reynolds number the equations therefore cannot be

solved directly, because of the lack of spatial resolution. In most applications, however, the small

turbulent scales are not of major interest. For that reason, methods have been developed to

model these small scales. In almost all previous research efforts, the turbulent compressible wake

flow field was calculated by using a Reynolds-averaged form of the Navier-Stokes equations (see

section 2.3). These calculations always lead to a time-averaged flow field. In the present research,

however, the main focus is on the time dependent behavior of the flow field and the evolution

and dynamics of large structures. Therefore, in the present research the method of Large-Eddy

Simulations (LES) was chosen for the calculation of the time dependent turbulent flow field.

LES has been successfully applied to isotropic turbulence and to wall bounded flows, such as

flat plate boundary layers and duct flow. For LES, the Navier-Stokes equations are filtered

in space, using the assumption that the small turbulent scales are separable from the larger

structures (eddies). The latter can then be calculated, while the former have to be modeled. In

the following sections the equations for the resolved quantities are derived. This derivation was
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done for the most part by [Israel (1996)] in close collaboration with [Speziale (1996)]. Here, the

derived equations are furthermore adapted to the axisymmetric geometry.

2.4.2 Spatial Filtering

For the filtering of the Navier-Stokes equations, any spatial filter of the form G(x; A) with filter

width A can be used, provided that it has the following properties:

G(+oo),G(-oo) -+ 0 ; (2.10)
Jc•G(•) d• = 1. (2.11)

The filtered value of property f, denoted as f, is defined by the convolution

(x) = +j G(x - ý; A)f(•)d•. (2.12)

This allows the decomposition of any quantity into a filtered and a fluctuating part by

f =7+f'.

For spatial derivatives of filtered quantities Ghosal & Moin (1993), for example, pointed out

that

df(x) d r+00
ýx - jx o G(x - 6)f (ý)dý

dx -dx _.oc
SdG(x -

Lo0 dx

= J- G'(x -

- G(x - ý)f( ) 002_ + G(x - ý)f'(ý)dý
00

dfr(x)
dx

since f must be finite on the boundaries and the filter vanishes at infinity. This property is only

valid for filters with a uniform filter width. For non-uniform filters, it can be shown that this is

only true to a second order approximation [see, for example, [Ghosal & Moin (1993)]].

In the conservative formulation of the compressible Navier-Stokes equations, the velocity

always occurs in products with the density. When the equations are filtered this leads to the

velocity-density correlation terms, T-•. In order to obtain separate variables (that is, not under

a correlation), the so called Favre filter (denoted by a tilde) is introduced, which is defined by

f P= (2.13)

The Favre filtered variable is also sometimes referred to as a mass averaged quantity. This allows

the separation of the density-velocity correlation terms by means of the substitution P7f = 5f.
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(Note: In the incompressible limit, p becomes a constant and f -+ f.) As before, the physical

quantity can also be separated into a Favre filtered part and a fluctuating part (denoted by a

double prime),

f =+f". (2.14)

2.4.3 The Continuity Equation

The continuity equation for a compressible fluid can be written in index notation as

Op OpfU.__iO- + O8i = 0. (2.15)

Applying the spatial filter to this equation directly leads to the filtered continuity equation,

a + =pl 0.
Tt axi

Introducing the Favre filtering the correlation in the second term can be eliminated and the

continuity equation for the mass averaged velocity can be obtained as

a- + P = 0. (2.16)

at ax,

2.4.4 The Momentum Equations

Similar to the continuity equation, the momentum equations for a compressible fluid can be

written in index notation as

9pui + 19puiuj - Op Ortj (2.17)
5F axý Ox-i (.Xj1

where the stress tensor is defined by

1L ( au i + u j _2 aU k 6 ,)rij = Re i xj + Oxi 3aXk 5j•

Spatial filtering as for the continuity equation leads directly to the filtered momentum equation

a-3i + --pu-j _-- 8-• • (2.18)5i- axi Oxi O xj '

where the terms iFuj and •Y are not closed and have to be modeled.

To preserve the form of the unfiltered equations, the term 6Xfij needs to be replaced with

•iij. First, the term can be expanded as follows by substituting 2.14,

uiuj = + +

uiui + U3'! + u4i&j + u 3'u1,

or for the filtered term

Uiuj = uiuj + fi j +H j-"it
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All the terms containing unknown correlations can be moved to 'the right hand side. To combine

them, a subgrid-scale stress tensor is defined as follows

aij = -Xiiufuj - ui'uij) (2.19)
= Lij + Cij + P_ýj

where Li., Cij, and R.:j are typically called the Leonard stress, the cross-stress, and the Reynolds

stress, respectively. They are defined by

Lij = -T(fijfi - fifj),

p• = --X + UI

Substituting 2.19 into the filtered momentum equation 2.18 leads to the mass-averaged (Favre

filtered) momentum equation

aOt, + ux- - -[j op a [j -a ij] (2.20)
at - axj aai ax3

The Leonard stress can be calculated explicitly. The cross-stress and Reynolds stress are not

closed, and must be modeled (see section 2.4.7).
To compute the filtered viscous stress tensor, ri7 needs to be expressed in terms of the

filtered quantities. In many applications, the molecular viscosity is assumed not to vary due

to the turbulent fluctuations. For example, [Erlebacher et al. (1992)] and [Zang et al. (1992)]

both assume small temperature fluctuations, and therefore take p to be constant over the filter
width. This leads to the following expression for the stress tensor

TY A M ( P+Di - 2 + - k ij)' (2.21)r=-Pl--- ý aXj + xi 309Xk

where the molecular viscosity 1 (T) is a function of the Favre filtered local temperature only.

2.4.5 The Energy Equation

In the formulation of the Navier-Stokes equations used in the present research the energy equa-

tion is expressed in terms of total energy. The equation in index notation is given by

O (p _e + p) + VaT ]Tpte--p)+---xiujrij . (2.22)
at ax, N axi

Unfortunately, if this equation is filtered directly several terms cannot be calculated directly and

need to be modeled. This includes the filtered total energy, defined as

pe-- =-;5 (CvT-- •iýuij ,
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where
Cv=

This quantity is not closed since ,ui-iu is not known. However, one can .construct a quantity ER,
which here is called resolved scale energy, given by

ER = (CvJ T+ tili). (2.23)

This quantity can be directly calculated from the Favre filtered velocities and temperature. In
addition, it can be related to Et using the relation

- 1
= ER - -Oii.

The governing equation for ER can be derived in the same manner as the equation for Et. First,

the equation for the resolved kinetic energy uiuii can be derived by multiplying the resolved scale
momentum equation 2.20 with uii, which leads to

S_70i +iopfij = -iii,8P - ._o 8 ..

at+ j x ataa
at a--•3  -at xj [I ai]x

Using the continuity equation, 2.16, multiplied by fii it follows

_____ _____ + a~fiii afii fi i - ra-i -arj
+ i [wi + apfiilýX

The right hand side can now be rewritten using the momentum equation 2.20 to yield the

equation for the resolved scale turbulent kinetic energy
1 W'filli 1 W-I'illiiij a( -f a (224
10 + 2ai a = i ax j (2.24)at 2 XjOxi Oxj

Similarly, the temperature equation for a compressible fluid in index notation is given by

opCT + = -P-_ui + a 29 OT '• (2.25)

at ~ ~ 0x a_ý- xT Z N ax '"a*

[see, for example [Bird et al. (1960)]].
Again, the equation can be filtered in a similar manner as the momentum equation. This

leads to O-iiCvT 0-fCvTu' _ au, a OOI O T u,
ot + o -- = -p-g• + a I--a-t-rn - (2.26)
at ax, axi axi N axi axj

Similar to the momentum equation, the term Tui cannot be calculated directly and has to be

modeled. Introducing a subgrid-scale heat flux, corresponding to the subgrid-scale stress tensor

2.19, one can define

Qi = -TC, (ii -- ui)
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where

L = PC,(Tii - The),

C? = fCv(T0u' - T i),

and

are defined similarly to the Leonard stress, the cross stress and the Reynolds stress tensors,

respectively. With these definitions the filtered energy equation in terms of the Favre filtered

temperature becomes

Oa-CVT OiCvTfii P-u- 8i a ' '0T 1 aui S+ - p - + IQ i - Tij-xj (2.27)

where the right hand side is still not closed without additional assumptions to model the filtered

correlations (see section 2.4.7).

Now the equation for resolved scale energy, ER, can be determined by summing 2.24 and

2.27, and rearranging indices. This leads to

aER 8fiLER _ ui I ~a c rig. gj 8 _
P. + ' --[ + - O -Q, • + 'P - a07rij- -; "i

atOiXi axi [N Oxi a xij axi ax~j

This equation cannot be written in a form similar to 2.22 due to the presence of disparate types of

filtering in the pressure and molecular stress terms. However, following [Erlebacher et al. (1992)]

the pressure terms can be rewritten as

aui a- ap oiii (oiij ou- '\
aO .fx 8 + Pa -P-

Oii -( 8u"' Ou"' \
P-- -- a+Pa+P8 +pO

Opfiii 1P- xi .

In addition, according to [Erlebacher et al. (1992)] the terms combined in ep are negligible.

The viscosity term can be handled similarly,

t~u - __ fii~rij aui Oaiij++ Ii 2i-N = Ty
Ox 3  Oxj /

Oxi + +--3,
_ Oiii-rij aj ai 0 ai q

Oxj

where the terms combined in c, are neglected for similar reasons as for ep [see, for example,

[Erlebacher et al. (1992)]].
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The subgrid-scale stress term can be written as (noting that aij is symmetric):

fi aý = a aiij~ aiJ "-" Iii[jaTiJ] - 0,ij x

a 1 (' aiiO + U, i
- [-i 2lj - ax, ax,)

ax

where ,ij is the strain tensor formed with the Favre filtered velocities.
Introducing all the above assumptions and definitions, the final form of the resolved energy

equation then becomes

at - 9 iii (ER+p)+ N ) -Qi - ii(M + -ii) ijj~ij. (2.28)

2.4.6 Equation of State

In addition to the Navier-Stokes equations, the equation of state also needs to be filtered.

Recalling the equation of state for an ideal gas

pT (2.29)

it follows that the filtered equation is

S= 7M . (2.30)
-yM.2

2.4.7 Subgrid-Scale Model

As an initial step, the subgrid model chosen for the present research is a constant coefficient

Smagorinsky type model as suggested by [Speziale (1996)] [see also [Smagorinsky (1963)]]. The
Smagorinsky model is an eddy viscosity type model, as are most turbulent models currently
used in fluid dynamics simulations. In this initial study the isotropic part of the turbulent stress

tensor is assumed to be negligible. Thus, the turbulent stress tensor takes the form

cij = 2"fi (2SkLSkl)'i (Sij- gSkk~ij), (2.31)

where the turbulent length scale t is given by

1 = C8  Ai ,

where Aj is the filter width in the i-th coordinate. Here, C, is the so called Smagorinsky constant.

At this point the most appropriate value for this constant for the given flow problem is unclear.

It has been found for other applications that this constant can vary between approximately 0.05
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and 0.2, where the lower values have been used for wall bounded flows and the higher values

have been used for isotropic turbulence [[Speziale (1996)]].

In addition, for wall bounded flows a wall damping function was suggested by [Speziale (1996)],

which ramps down the effect of the model in the wall-near region (For the present research the

turbulence model was only used downstream of the blunt base. Thus, in this case the wall of

interest is the base itself.)

3 e- AT

where x is the wall normal direction and

A+=25 ; x+=p__TVD- ; U, X=0

For the first investigations, the constant was chosen to be 1

C, = 0.065

For the subgrid-scale heat stress, a gradient transport hypothesis is used [see, for example

[Erlebacher et al. (1992)]], which leads to the following model

Qi = -_ V kI•& 1 (2.32)

where the turbulent Prandtl number, PrT is assumed to be unity for the present research. Using

a turbulent conductivity dt, defined as

=PC e2 2[klgk, (2.33)

the subgrid heat stress can be expressed by

Qi = -t-. • (2.34)

2.4.8 Resolved Scale Equations

In the cylindrical coordinate system that has been used here, the final equation for the resolved

(filtered) quantities is given by

A+-B+ -C+--D+ -E +F =0. (2.35a)
8t x r rOO r

'Note: V-C, = CR, or CR ,z 0.8409V'. where CR is the Smagorinsky coefficient as defined in

[Erlebacher et al. (1992)].
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Here the vectors are defined by

A= 7r, I (2.35b)

;552 + P + T7 x - Oxx

B =Tivxr + Trx - Urx (2.35c)
ývxvo + Tox - 00X

(N + 5• + Ox (Txx - Uxx) + Or(;rx -rx) + 00 (T03 -a 03: )

pvr

PTOz~r + ;Frx - 0Urx

=2 + P + Trr - 0r , (2.35d)

/2VrVO + )Tro
0, (ER +~)- + 19t)0- +Ox (Trx -Orx) + Or (T,, Orr) + '50 Trea- re)

pr~o

TOX0 +Tox- COX
D = brvo + 7,0 - aOW, (2.35e)

O (ER +p-( + 19) e
'iJO(ER +8) + + Ox (eox - o 3x) + 0 r(Tro--arO) + '50 (Too -aUo)

PF~x~r + T rx - Urx

E= 7i- _ + -rr - 0r - Too - 00 , (2.35f)

2Piriio + 2Tro - Uroit- + t )t +e( - ) + • • - • o • - o
iOr(ER + P)

and
0
0

•F = 0 (2. 35 g)
0

g 2  [1 I 11 2 _ 2 '§ + ,§ r + § o)

where the norm of the strain tensor is defined as

= /2 VX + 9,2r + 902 + 2,§,2x + 2 gre + 2 902,, (2.36)
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and the strain tensor components are given by

xx = 1._o, (2.37a)
Ox

r '= (2.37b)

14=,60 + or (2.37c)

1 roxx , I (2.37d)

So9 o + - O-,1 (2.37e)
ýox -xo 2 L ax r 09

and

S§r-- e=- [rr --r = -- LOt 0 + 1 1Of)v . (2.37f)
2 LOr Ir rO ~ 2 Or -r -r O

Then the components of the filtered stress tensor can be written as

rr= 2RD (& V. +, (2.38a)

-FDeD 32-L-Y= 2D Sx (2.38b)

o = = 2 o+ ,1 , (2.38e)
PReD

and

ToD = Tro = 2-DD r0, (2.38f)

and the components of the turbulent stress tensor are given by

o~xx = 2,i 2~jjI (SX + 1 V ) (2.39a)

0'rr= 2fie2IIS (g"r+ 1 V ) (2.39b)

aoo = 2f&2 11S11 (go + lv. 6 (2.39c)
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'xr -- 0rx =- 2/e 2 IHsI~rr, (2.39d)

o.x = o = 2g•2 jjS§ISx, (2.39e)

and

ao, = uro = 2ie2 IjSIISr6 , (2.39f)

where the turbulent length scale e is given by

S= C8 A, (2.39g)

and the filter width A for a cylindrical coordinate system by
1

A (AxArrAe) 3 (2.39h)

2.4.9 Integration Domain and Boundary Conditions

The integration domain and the boundary conditions for the Large-Eddy Simulations are the

same as for the three-dimensional Direct Numerical Simulations (see sections 2.3.2 and 2.3.3).



Chapter 3

Numerical Method

For both the Direct Numerical Simulations (DNS) and the Large-Eddy Simulations (LES), the

governing equations and the boundary conditions are discretized using fourth-order accurate
difference approximations in the axial (x) and radial (r) directions. To achieve higher resolution

inside the shear layer, a geometric stretching is applied in both directions. Because of the truly
periodic nature of the flow field in the azimuthal direction a pseudo-spectral approximation is
employed in 0, using a truncated Fourier series. According to the pseudo-spectral method, the
non-linear terms are calculated in physical space and then transformed into spectral space. This
method is based on the numerical method used by [Thumm (1991)]. Here, the discretization
of the governing equations is only shown for the three-dimensional equations of the Direct
Numerical Simulation. The axisymmetric equations are just a subset of those and for the Large-
Eddy Simulations the equations of the resolved scales are very similar.

3.1 Discretization of the Governing Equations

The numerical method for solving the governing equations consists of a fourth-order accurate

explicit Runge-Kutta scheme for the time integration, and fourth-order accurate central finite

differences for the approximation of the spatial derivatives in the radial and axial directions.

3.1.1 Fourier Decomposition

Due to the periodic nature of the flow field a truncated Fourier series transform is applied in the

circumferential direction. Thus, the flow quantities in physical space can be expressed by their

representation in Fourier space as follows:

f (X,rO0)= Pk (x,r0).ei, (3.1)

k=-K

29
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where i = Vr-1.
Since f has to be real, it follows that

Fk= Conj. (\Fk). (3.2)

Substituting the Fourier representation into the governing equation and using the fact that

D Dk (3.3)

one gets a set of K + 1 coupled equations of the following form

-Ak+ Bk + -Ck+- k +-Ek = 0 (3.4)
at Ak r r

The coupling terms arising from cross products in the convective and the dissipative terms are

calculated using a pseudo-spectral method, where the products are calculated in physical space

and then transformed back into Fourier space (see, for example, [Tourbier (1991)]).

The Fourier representation reduces the original three-dimensional problem to a set of K + 1

two-dimensional problems. The integration domain for this problem set is the same as for the

axisymmetric problem, shown in figure 2.1. This results in an artificial boundary at the axis of

symmetry that was not present in the original three-dimensional problem. For this boundary,

an additional set of boundary conditions has to be specified. This will be further explained in

section 5.2.2.

3.1.2 Spatial Derivatives

In order to enhance numerical stability, the fourth-order accurate central finite differences that

are employed for the approximation of the spatial derivatives are split into one-sided backward

and forward finite differences. The splitting directions are alternated at intermediate time steps.

The method is similar to the MacCormack method [see, for example, [MacCormack (1969)]].

This way artificial viscosity is added to the discretized equations, damping grid mesh oscillations.

The resulting difference formulation is shown the following example.

The fourth order central differences are split into a second order backward and a second

order forward difference in the following manner:
(7bi -1f 1(35

=-6 (i -
8 1i-i + Ai-2) ; Jh = • (-7ft + 8 fi+1 - fi+2). (3.5)

Adding both derivatives leads to

2f• = 1 (fi-2 - 8fi-1 + 8fi+l - fi+2), (3.6)

6h-

which is the same formula as the commonly used fourth order central difference, except that

here the one sided differences are evaluated at different intermediate time steps.
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Second derivatives are separated into two first order derivatives, with the splitting applied

in the opposite direction for the first derivative inside, as follows:

f 7 - 8f,_, + -2)

1
- (- 7fi-2 + 64fi-1 - 114fi + 64fi+1 - 7fi+2), (3.7)

and

ff = ý T (-7ft, + 8b+ - fbi+2)

1
= 1 (- 7fi-2 + 64f1-1 - 114fi + 64 fi+i - 7fi+2) (3.8)

After adding, this leads to the following approximation for the second derivative
1

2f" = 1 (- 7 fi-2 + 64fi-I - 114fi + 64fi+i - 7fi+2) (3.9)

Applying Taylor series to the difference formula shows that the approximation is fourth-order

accurate:

2f'" = 1"81 (-14f'(xi) + 32f"(xi) + 32f"(xi) - 14f"(xi)) + 0(h4)

= 2f"(xi) + O(h 4). (3.10)

Since the formulation for the second derivative is the same for all intermediate time steps, no

additional artificial viscosity is introduced.

3.2 Grid Stretching

As mentioned above, a geometrical stretching is applied in the axial and radial directions. For

the stretching functions in both directions, higher order polynomials have been chosen [see,

for example, [Tourbier (1991)]]. Through the grid stretching, extra factors are added to the

derivatives of the original equations. Changing from the (x, r) coordinate system to the (ý,,7)

coordinate system, these factors are given by 9 and dr for the axial and the radial direction,

respectively. The stretching functions that were chosen here and the factors are given in the

following two sections. A sample of the stretched grid is shown in figure 3.1.

3.2.1 Axial Direction

For the grid stretching in the axial direction, a third order polynomial was chosen as the stretch-

ing function. The polynomial is of the following form:

x(ý) = Ax 3 + Bxý + C,. (3.11)

To guarantee the highest resolution to be at the base (x = 0), the equation has to satisfy the

condition -- 0. For convenience, the following conditions were added:con ~diton lx=0



CHAPTER 3. NUMERICAL METHOD 32

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

x/D

Figure 3.1: Example for grid stretching.

at x =0: z= 6=0

at x =1:

Here, s, is a stretching parameter that can range between zero and one, where si = 0 means

infinite stretching and s., = 1 means no stretching. Using these conditions, the three constants

for the stretching function are given by

Thus, the stretching in the axial direction is given by

XW= (1-SW+sý (3.13)

The additional factor that is added to the axial derivatives is given by

d6 1.0 0.0 11 (3.14)

3.2.2 Radial Direction

In the radial direction a fifth order polynomial was chosen for the stretching function, because

the point of highest resolution is at r= 0.5 and the function needs to have two inflection points.

The general form of the polynomial is given by

r?)= A75+ B, 93 + Cnr + D,. (3.15)

In order to assure the highest resolution at r 0.5, the polynomial needs to satisfy the condition
or t = 0. For convenience, the following conditions were added:

Adq = -s ;B =s ;C=0 3.2
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at r=O0: 0
at r =•0.5: dr x=0.5d• =t ; 77=1.

Again, sr is a stretching parameter that can range between zero and one, where sr = 0 means

infinite stretching and Sr = 0.5 means no stretching. Using these conditions, the three constants

for the stretching function are given by

3 (Sr_) ; ( (Sr (3.16)Ar =- s- ; Br=• 5 Sr- 1) Cr=-- s- ,

and the stretching function in radial direction is
3 ( r _ 1) 7 5 +7

r (7) =- (r -1)q'+ (, -1)]17.(3.17)

The stretching factor for the radial derivatives is given by
d7? (77) -- 1 (3.18)_) 4 1

-r •S (- S )774+•(Sr -)7 +[•- (Sr- (.

3.3 Discretized Equations

The resulting discretized equations are shown here for the example of the continuity equation

for the time t = to + lAt at the point ý = ýo + mA6 and 17 = 770 + nA77. The continuity equation

for the k-th Fourier mode in the stretched coordinate system is given by

_..kk _ d•8(PU)k d 770(PV)k _ik(pw)k (PV)k (3.19)

5t = dx aý dr a77 r(77) r() (3

For this equation the discretized Runge-Kutta intermediate steps are:

First Predictor:

Forward Euler half step with backward spatial finite differences

2, = PkImln, + - RHSIm,ni (3.20)

First Corrector:

Backward Euler half step with forward spatial finite differences
AtP*lm,n,1+½ = Pklm,n,1 + A RHS*lm,n,t+." (3.21)

Second Predictor:

Midpoint rule full step with backward spatial finite differences

Pk**Im,n,+l= Pklm,n,i + At RHS**Im,n,l+½ . (3.22)

Second Corrector:

Simpson's rule full step with forward spatial finite differences

At
Pklm,n,i+1 = Pklm,n,t + • [RHSlm,n,1 + 2 RHS*lm,,,+½

+2 RHS**Im,n,l+½ + RHS***Im,n,1+1] , (3.23)
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where the ride hand sides for the intermediate time steps are given by

RMS lm,.,, =

I-ý1,[ (; km,n,ij - 8 (Pu)kK + (PUý)klm -2,nj
6A6 dx i-~~

- -[7 (PV)kj~ 8 (pv)k4 m~~+ (PV~))k m,n-216Aq?7d Inmn mnl -,

ik (pv)klmnl (3.24)
- (7 -- (w) kj mni - r(77)(.4
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RHS*

1 dr k + 8 m-

-ik -'-*___*_ _+ (3.25)

"r(') (r••••½ (,r) '

6A-' -dr m )Ukm,n,tl+ 2k2
RHS* 1ra n +½* +

ik --- )k** -,nJ+ (3.26)

r w*(-) (•) k ,,+ (3.25)

and

RHS** Im,n,l+1 =

1 +8 (uý 7 k ~ ~ ~ ,~ -8u~ k k +,,1

6 ~ [ -7 (•*"I mnl+l + 8 (V)*"Im,n+1,+1 -+ CP)i** m,n+2,1+1

6A?? dr m +1 n

ik (W)-** 1  -V-)*k Imn,1+2 (3.27)

r(•) k* ,,,+ 1 r(7)

3.4 Integration Domain

For the discretized governing equations, the integration domain (shown in figure 3.2) is two-

dimensional. The whole domain is divided into two subdomains. The first part includes part of
the boundary layer on the axisymmetric body and extends from the inflow boundary to the base
corner and from the wall of the axisymmetric body to the free stream boundary. Adjacent to the
first domain, the second part extends from the base to a location downstream of the recirculation
region. The second domain extends in the radial direction from the axis of symmetry to the free
stream boundary. For the three-dimensional problem this adds an additional boundary at the
axis and boundary conditions have to be specified (see the following section).

3.5 Discretized Boundary Conditions

As in the previous chapter, the boundary conditions for the discretized problem are divided into
the conditions for the axisymmetric case and the conditions for the three-dimensional problem.
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r free stream boundary
I-------------------------------------------------------------

domain
inflow I
houndary

domain outflow

boundary

axis of symmetry x

Figure 3.2: Integration domain for the discretized equations

3.5.1 Axisymmetric Boundary Conditions

For the given flow field, there are five boundaries, where boundary conditions have to be specified.

Inflow

At the inflow boundary all flow variables, except for the pressure within the subsonic layer,

are specified, given by a flat plate boundary layer similarity solution. In the subsonic layer

the pressure at the inflow boundary is assumed to be constant in streamwise direction and

is extrapolated from the flow field, using

Pl,n = P2,n, if M1,. < 1. (3.28a)

Outflow
02

At the outflow boundary the second derivative in the axial direction, •, is set to zero.

This leads to the following fourth-order accurate one-sided finite difference approximations

for the first derivatives near the outflow boundary:

00 34 0m,n + 3 0M-1,n6 - 4 2qM-2,n + 5 0M-3,n (3.28b)

19 M-1,n -66A6 32b

and
oM 85M,n -- 108'PM-l,n + 2 7 05M-2,n - 4 'PM-3,n (3.28c)

.1M,n 66A6

Walls

At the walls, all velocities are set to zero. For the calculation of a steady flow field, the

body is assumed to be adiabatic. Therefore the normal gradient of the temperature is

zero. For the calculation of an unsteady flow field, the wall temperature is kept constant

in time. The pressure at the wall is extrapolated from the flow field, using the wall normal

momentum equation. Thus, the conditions are
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At the horizontal wall:

Vxjm'W = 0,

VrIm'w= 0,

Tm ,w = 1 [300 (Tm,.+i - Tm,w+2 ) + 200Tm,w+3 - 75Tm,w+4 + l2Tm,w+ 5 ],137
for a steady flow field,

Tm,w = To I mw,w for an unsteady flow field,

Pm,w =-- Trrm,w + 1 [300 (pm,w+1 + Pm,w+lvm2,w+l + Trrm,w+l - Pm,w+2
2 2rmw2 P~+

-Pm,w+2VM,w+2 - Trw+2 +200 (mw3+ Pm,w+3Vm,w+3

+T-rrm,w+3) - 75 (PmI w+4 + Pm,w+4VMn,w÷4 + Trrm,w+4)

+12 (Pm,w+5 + Pm,w+5VM , w+5 + Trrm,w+5)]

-6A [ dl 12A 1 (rxm-2,w - 8 Trxm-l,w + 8 Trxm+1,w - rxm+2,w)

+ *Trrm,w - TOOm,W] dr I.(3.28d)

At the base:

Vx b,. = 0,

Vr b,. = 0,

Tb,n = 1[300 (Tb+l,n - Tb+2,n) + 2 00Tb+3,n - 75Tb+4,n + l2Tb+5,fl],

for a steady flow field,

Tb,n = Tolb,fl, for an unsteady flow field,

Pb,n = -Tzzb,n + 1~ [300 (Pb+l,n + Txxb+1,n -Pb+2,n - Txxb+2,n)

+200 (Pb+3,n + Tzxb+3,n) - 75 (Pb+4,n + 'Tzxb+4,fl)

+12 (Pb+5,n + Txxb+5,fl)] - 60A6 [ 12A (Trxb,n-2 - 8 Trxb,n-I
Trbr 12A77

+8T'rxb,n+l - Trrxb,n+2 ) + ) dý b (3.28e)

Axis

At the axis the symmetry of the flow field is used to determine the flow quantities at

locations outside the integration domain. Therefore, it follows

P1,m,-1 = Plm,2 Plm,-2 =Plm,31

PVxlm,-l PVxlm,2 P1Jxlm,-2: = PVxlm,32
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PVrlm,-1 - PVrlm,2 PVrlm,-2 - -- PVr,3

pelm,_1 pelm,2  ; peI., 2 = Pelm,3 . (3.28f)

For all P- terms the rule of l'H6pital is applied as described in appendix C.

Free stream

At the free stream boundary, three different boundary conditions are applied, according
to the free stream Mach number of the flow field. The conditions are described in detail

in Appendix B.

Initial condition

As initial condition for the calculation of a steady axisymmetric flow field the similarity
solution of a compressible flat plate boundary layer is used. In addition, the radial velocity
is determined by integration of the steady continuity equation. For the calculation of an

unsteady axisymmetric flow field, a previously calculated steady axisymmetric flow field
is used as initial condition.

3.5.2 Three Dimensional Boundary Conditions

Inflow

For the three-dimensional (unsteady) calculations, all variables at the inflow boundary
are specified. The only exception is the pressure in the subsonic layer, where the first
derivative of the pressure is set to zero. So,

Pi,n = P2,n if Ml,n < 1 . (3.29a)

Outflow
As for the axisymmetric calculations, the second derivatives of all flow quantities are set

to zero at the outflow boundary. For the first derivatives, the same difference formulas as
for the axisymmetric flow are used.

Walls

At the walls, all velocities are set to zero. The temperature along the walls is kept constant
in time, assuming the body cannot change temperature on the given time scale. The wall
pressure is extrapolated in physical space in the same fashion as for the axisymmetric

problem. This leads to the following boundary conditions at the azimuthal location 0 =

hAO:

At the horizontal wall:

Vxlm,w,h = 0,

Vrlm,w,h 0 0,

VOlm,w,h = 0,
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Tm,w,h = TOIrn,w,h ,

Pmwh =-Trrmwh + [300 (Pmw+1,h + Pm,.+l,hV, w+l,h + T rrm,w+1,h

-Pm,w+2,h - Pm,wt2,hVVm,w+2,h - Trrmw+2,h)

+200 (Pm,w+3,h + Pm,w+3,hvm ,w+3,h +rrrmw+3,h

(2
75 (Pm,w+4,h + Pm,w+4,hV m,w+4,h + TTrmw+4,h)

+12 (Pmw+5,h + Pm,w+5,hVr ,w+5,h +Trrmw+5,h)] (3.29b)

-60At 7 drw [dl m 12A• (Trxm-2,w,h - 8 Trxm-_1,w,h

+ 8Trxm+l,w,h - rrxm+2,w,h) + Trrmwh - TOOmwh + O0 - ]O
where the azimuthal derivative -0 10 is calculated in Fourier space and then trans-
formed into physical space.

At the base:

VX b,n,h = 0,

Vrb,n,h = 0O

VOlb,n,h = 0,

Tb,n,h = T01b,.,h

Pbnh Txxb,n,h + [300 (Pb+l,n,h + Txxb+l,n,h - Pb+2,n,h - Txxb+2,n,h)

+200 (Pb+3,n,h + Txxb+3,n,h) - 75 (Pb+4,n,h + Txxb+4,n,h)

+12 (Pb+5,n,h + Trxb+5,n,h)] - 60Aý dx [d 2At1

- 8 Trxb,n-lh + 8 Trxb,n+l,h - Trxb,n+2,h) b [d" In 12A ( b

+ 1 (rxb,nh + 1- (3.29c)ao b,n,h/

Axis

The Fourier expansion of the three-dimensional governing equations results in an addi-

tional boundary at the axis of symmetry. Therefore, a set of boundary conditions has

to be described for the discretized equations. At the axis, the even Fourier modes are of

symmetric nature and the odd modes are of antisymmetric nature. They can be prescribed

at the boundary as follows. The derivation of the boundary conditions for the different

Fourier modes is described in detail in appendix C.

k=0

The boundary conditions for Fourier mode k = 0 are exactly the same as for the
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axisymmetric case,

Pim,-1,O = •m,2,0 P1m,-2,0 = _- m,3,0,

P'im,-1,0 = PX-_Im,2,0 ;P"XIm,-2,0 = fiVlm,3,0O

V-Im,-1,0 = -- P_-Im,2,0 ;-;D,1m,-2,0 = - PVrim,3,0O

Pfelm,-1,o = PeIm,2,o PeIm,-2,o = Pelm,3,o, (3.29d)

while for k = 1

Plm,l,1 = 0,

PV{Imj,, = 0,

PV"Ii,,i + i PVO-1m,li = o,
Fe1mi,1 = 0, (3.29e)

and for k > 2

P1m,1,k 0,

PV-Xjm,i,k =1

PvlTm,l,k = 0,

P_01.m,1,k = 0,

Pelm,l,k = (3.29f)

For all $ terms the rule of l'H6pital is applied as described in appendix C.

Free stream

As for the axisymmetric flow, three different types of boundary conditions axe applied at
the free stream boundary, according to the free stream Mach number. These are described

in more detail in appendix B.

Initial conition

As initial condition a previously calculated steady axisymmetric flow field is used.

3.6 Filtering

For the Large-Eddy Simulations the flow quantities p, pvx, PVr, and pvo are filtered at every

Runge-Kutta stage. In the present research a sixth-order compact filter has been chosen [see,
for example, [Lele (1992)]]. This filter has been tested extensively by [Bachman (1996)]. As an

example, the equation for a quantity filtered in the axial direction at a given location (xi) is

fFf i-2 + aFfi-I + f-i + aFf-j+l + /3Ffi+2

- afh + 2 (fi-l + fi+l) + -2 + fi+2) + 2 (fi-3 + A+3) (3.30)

where fi are the unfiltered quantities and fi are the filtered quantities.
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The coefficients are given by

aF = 0.6522474 8•F = 0.1702929

a = (2 + 3caF)/4 b = (9 + 16aF + l0,F)/1 6  (3.31)
c = (aF + 4,3F)14 d = (6, 3F - 1)/16

This filter has been successfully used for Large-Eddy Simulations of incompressible flat plate

boundary layers by [Bachman (1996)].

At all Reynolds numbers calculated in the present research, the boundary layer approaching

the corner of the base remained laminar and turbulence modeling was not needed in that region.

The filtering, thus, is applied solely in the second subdomain, downstream of the base of the
axisymmetric body. In the transition region between the two domains, the turbulence model is

slowly ramped in, using the same formula as for the wall damping function (see section 2.4.7).

3.7 Disturbance Generation

For the unsteady (disturbed) calculations, disturbances are introduced into the flow field. In

general, there are two different types of disturbances that can be generated, pulse disturbances

and continuous disturbances. The main difference between the two types of disturbances lies

in their frequency spectra. A continuous disturbance typically has a fixed frequency and thus,

only an isolated single frequency disturbance is introduced into the flow field (see figure 3.3).

This allows the investigation of the stability behavior for one given frequency.

1.0 1.0

0.5

S~0.0 0.5
E

-0.5 0.

-1.000
0.0 20.0 40.0 60.0 0.0 0.2 0.4 0.6 0.8 1.0

time frequency

Figure 3.3: Continuous disturbance; time signal (left) and Fourier transform (right).

On the other hand, a pulse disturbance generates a broad spectrum of frequencies in the

flow field. The broadness of the spectrum depends on the length of the pulse (see figure 3.4

and figure 3.5). Thus, the broadest spectrum, or in other words the widest frequency band, is

generated by a single spike disturbance in time (see figure 3.6).
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Figure 3.4: Single pulse disturbance over three periods; time signal (left) and Fourier transform

(right).
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00

0.0.0
•a0 0.0 2

-0.5 0.02

-1.0 0.00
0.0 20.0 40.0 60.0 0.0 0.2 0.4 0.6 0.8 1.0

time frequency

Figure 3.5: Single pulse disturbance over one period; time signal (left) and Fourier transform

(right).

3.7.1 Continuous Disturbances

Disturbances of different Fourier modes are introduced into the flow field by radial blowing and

suction through a circular slot near the base of the axisymmetric body (see figure 3.7). When a

normal velocity distribution of the form shown in figure 3.7 is used, the net mass flow through the

disturbance slot is zero at every instant of time. This technique produces predominantly vorticity

disturbances and only to a lesser extent undesirable "sound" disturbances. The disturbances

first develop within the boundary layer region and then travel into the free shear layer region

and the recirculation zone.

By varying the real and imaginary parts of the Fourier component of the disturbed radial

velocity at the blowing and suction slot, rotating disturbances can be introduced, thus pro-

ducing a helical wave that travels downstream. It has been shown for incompressible wake

flows that the flow field is unstable with respect to these helical disturbances [see, for example,

[Schwarz (1996)]].
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Figure 3.6: Spike disturbance; time signal (left) and Fourier transform (right).

3.7.2 Pulse Disturbances

A pulse disturbance can also be introduced through the blowing and suction slot, by varying the

amplitude over time. This generates a wave packet and allows investigation of the disturbance

behavior for a spectrum of frequencies as the wave packet travels downstream.

In addition to blowing and suction, a second method is used for the generation of pulse

disturbances. In this case, a discrete pulse is introduced locally into the flow field at a location

within the recirculation region. Usually, a pulse in form of a single spike in the first azimuthal

Fourier mode of the density at a specified grid point and only one instance in time is used. This

method generates disturbances with the broadest possible spectrum of frequencies. It is mainly

used to investigate the existence and behavior of absolute instabilities.

3.8 Computational Procedure

For the investigation of the behavior of three dimensional flow disturbances, an axisymmetric

initial undisturbed flow field has to be determined. Since no similarity solution exists for the

compressible axisymmetric wake, the first step in the computational procedure is to calculate a

steady flow field using an unsteady axisymmetric Navier-Stokes program. As initial condition

for this axisymmetric calculation, a similarity solution for a compressible flat plate boundary

layer is used. The unsteady calculation is terminated once the temporal changes of the flow

variables are much smaller than the expected disturbance amplitudes.

This axisymmetric flow field is then used as initial condition for the three dimensional dis-

turbance calculation . Disturbances are introduced either through a blowing and suction slot

along the circular body near the base or locally into the flow field as a single pulse of width At

(see section 3.7). The time dependent evolution of the disturbances is monitored over several

time periods to investigate growth or decay and influences on the global flow field.
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Figure 3.7: Disturbance generation through a blowing and suction slot.

For sufficiently high Reynolds numbers, local regions of very high velocity gradients appear
in the flow field. In that case, the calculation with DNS is terminated before the gradients
become so large that they would cause numerical instability and eventually a termination of
the program. The instantaneous flow field at this point is used as an initial condition for a

Large-Eddy Simulation.
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Code Validation

At the present time, no data are available for supersonic axisymmetric wake flow fields in the

Reynolds number range between PeD = 500 and ReD = 30,000. Therefore, most of the code val-

idation was performed by comparing the results of very low Mach number subsonic calculations

to DNS data for an incompressible axisymmetric wake that was obtained by [Schwarz (1996)]

[see also [Schwarz et al. (1994)]] and by further comparison to experimental results that were

obtained in our own water channel by [Siegel (1996)]. In addition, for supersonic flow a step

size analysis was performed for the axisymmetric flow case.

4.1 Axisymmetric Flow

As a first step, the code validation was performed for steady and unsteady axisymmetric flow

calculations. The code validation was done for a low Mach number subsonic flow by comparison

with results from incompressible calculations and from experiments. For supersonic flow a step

size analysis was performed, because of the lack of experimental data and previous numerical

results.

4.1.1 Subsonic Flow Fields

For validation of the Navier-Stokes code for the steady (undisturbed) axisymmetric flow, the flow

field for a free stream Mach number of M,, = 0.2 and a global Reynolds number of ReD = 1,000

was calculated for two different spatial resolutions. In both cases the grid was stretched in

the axial and radial directions with the same stretching factor. The results were compared to

results from a calculation for an incompressible axisymmetric wake by [Schwarz (1996)]. For the

incompressible calculations no grid stretching was used. The parameters for the incompressible

calculation by Schwarz (1996) and cases Al and A2 of the current compressible calculations are

listed in table A.1.

For comparisons of the compressible and the incompressible simulations, the length of the

recirculation zone was chosen as a global characteristic of the steady flow field, and the azimuthal

vorticity at the corner of the base was chosen as a local characteristic. The recirculation length,

45
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which is the distance of the free stagnation point from the base, for the current calculation is

Lrec - 2.1, (4.1)

for all three cases. Thus, both compressible calculations compare very well with the result of the

incompressible calculations. Figures 4.1 and 4.2 show the steady streamlines for both validation

cases. The streamlines clearly exhibit the region of recirculation. From the corner of the base,

the flow separates geometrically and bends gradually towards the axis of symmetry. The free

stagnation point can be found at x = 2.1 for both grid resolutions. Both cases show basically

identical streamlines and are in very good agreement with the incompressible results.

Fiur 4.1 Sted sremis for vaiato cas 7Al.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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Figure 4.1: Steady streamlines for validation case Al.
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The azimuthal vorticity at the corner of the base, which is defined as

S= -V x i , (4.2)

turns out to be dependent on the grid resolution at the corner in both the incompressible and the

compressible calculations. At the corner one-sided differences have been used for approximation
of the spatial derivatives of the velocity. For the incompressible calculation, corner vorticity was

found to be

wo,incomp x=0,r=0.5 = 6.8, (4.3)

whereas for cases Al and A2 the values are

W0'11x=or=o.5 = 7.2, and WO,21IzO,r=O.5 = 7.6. (4.4)

Considering the different resolution in the three cases and the different methods, the values are

in reasonable agreement. Figures 4.3 and 4.4 show isolines of azimuthal vorticity for the two

compressible validation cases. In both plots, the vorticity levels for the isolines axe identical

(Iwo = 1,2,3...). The lines in the two cases are almost identical and also coincide with the plot
shown in Schwarz (1996). In conclusion, the agreement for the steady axisymmetric flow for the

case of a very low subsonic free stream Mach number is very good.

I I I I I I I I I I

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x

Figure 4.3: Steady azimuthal vorticity field for validation case Al.
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x
Figure 4.4: Steady azimuthal vorticity field for validation case A2.
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For validation of the Navier-Stokes code for the unsteady (disturbed) axisymmetric flow,

the response of the subsonic flow field of case Al (obtained from the steady calculation as dis-

cussed above) to a small axisymmetric disturbance was calculated (case A3). In this calculation,

the steady axisymmetric flow was disturbed with a continuous axisymmetric disturbance at a

frequency of 83 = 1.0. The disturbance was generated through a blowing and suction slot as de-

scribed in section 3.6. The amplitude of the blowing and suction distribution was 0.001 percent

of the free stream velocity. Therefore, a linear behavior of the generated disturbance wave can

be expected.

The calculation was carried out until the entire flow field reached a time periodic state. At

this point the spatial development of the disturbance waves in the wake region was investigated

to obtain the spatial growth rates. Figure 4.6 shows the spatial growth rate of the disturbance

frequency versus downstream location. For comparison with the incompressible calculations the

disturbance waves were monitored in the form of the square root of the kinetic disturbance

energy. Assuming a behavior of the disturbance waves of the form

v-E = Ae-i'x-0t), (4.5)

with complex a and 3, the spatial growth rate is given by the imaginary part of the wavenumber

as follows

-- =i = - [ln (V)], (4.6)

where

E = rmax [v2 + V2] rdr. (4.7)

The results show a region of positive growth (denoted by a negative al), which reaches up

to about 1.2 diameters downstream of the base. Downstream of this location the disturbances

are damped and eventually die out. Comparing these growth rates to linear stability theory

and incompressible calculations [Figure 4.4 in Schwarz (1996)] very good agreement was found

(see figure 4.5). Thus, also for the unsteady axisymmetric calculations very good agreement was

found between the compressible and the incompressible calculations.

4.1.2 Supersonic Flow Fields

As mentioned earlier, no experimental data are available for supersonic wakes in the Reynolds

number regime that is applicable for Direct Numerical Simulations. For that reason a step-

size investigation was performed for an axisymmetric flow at a free stream Mach number of

Moo = 2.46 and a global Reynolds number of &eD = 30,000. The flow field was calculated for

two different spatial resolutions. The computational parameters for both cases (A4 and A5) are

given in table A.1.

Comparisons were made for the axial and radial velocities, the density, the pressure, the

temperature and the local Mach number. The results in form of isolines are shown in figures

4.6 through 4.11, respectively. In all the figures, the results for the lower resolution (case A4)
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Figure 4.5: Spatial growth rate ai for an axisymmetric disturbance of 8,. = 1.0, fJi = 0.0;

FeD = 1,000 [circles from Linear Stability Theory by Schwarz (1996)].

are shown at the top and for the higher resolution (case A5) below. All flow quantities show

excellent agreement between the two different cases. The wiggles at some isolines for the pressure

in the lower resolved case (see figures 4.7 through 4.9) are due to the plotting software (linear

interpolation). These results indicate that the lower resolution was sufficient for the calculation

of this flow field. Coincidentally, this resolution was the lowest possible to avoid numerical

instabilities in the calculations.

0l.0 .5 1.0 1.5 2.0 2. 3.0 3.5 4 4'. 5.0 5.5 6.0 6.5 7'.0 7.5

x

0.0 0 5 1.0 13.0 3.5 4.0 4.5 5.0 5.5 6 6.5 7.0 7.5

Figure 4.6: Isolines of axial velocity at M. # 2.46 and ReD = 30,000 for two different spatial

resolutions [Cases A4 (top) and A5 (below)].
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.10 5.15 6.10 6.15 7.10 7.15

Figure 4.7: Isolines of radial velocity at M,, x= 2.46 and ReD = 30, 000 for two different spatial

resolutions [Cases A4 (top) and A5 (below)].
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Figure 4.8: Isolines of density at M,, = 2.46 and ReD = 30,000 for two different spatial

resolutions [Cases A4 (top) and A5 (below)].
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Figure 4.9: Isolines of pressure at M.. = 2.46 and ReD =30, 000 for two different spatial

resolutions [Cases A4 (top) and A5 (below)].
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Figure 4.10: Isolines of temperature at Moo = 2.46 and P&D = 30,000 for two different spatial

resolutions [Cases A4 (top) and A5 (below)].
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4.2 Three-dimensional Flow

A more thorough validation would be desirable at this point for the codes used for the calcu-

lation of three-dimensional, time dependent supersonic flow. However, the three-dimensional

simulations at the chosen resolution for the supersonic flows were already very CPU time and

memory intensive (see chapter 5). A three-dimensional calculation at the given resolution of

case A4 typically required 600 MBytes of main memory and in the order of 1,000 CPU hours

on a CRAY C90. Therefore, the three-dimensional code was validated for a subsonic flow at

M. = 0.2 and PeD = 1,000.

For the validation of the Navier-Stokes code for calculating the three-dimensional unsteady

(disturbed) flow, the response of the subsonic flow field of case Al (obtained from the steady

calculation as discussed above) to a three dimensional disturbance input was calculated and the

results were compared to results from incompressible calculations by [Schwarz (1996)] and to

water channel experiments carried out in the Hydrodynamic Laboratory at the University of

Arizona. The simulation was performed with up to eight complex Fourier modes in azimuthal

direction and the same spatial resolution as for case Al.

4.2.1 Absolute Instability

For a first calculation (case Ti), the flow was disturbed with a pulse disturbance of the frequency

fl = 0.1 through the blowing and suction slot. The pulse had a duration of two full periods and

was ramped up and down in time, using a sin 2 function. In a second calculation, the flow was

disturbed only at the very first time step locally within the recirculation region (as described in

section 3.6) at x = 0.25 and r = 0.25. The flow response is similar for both the compressible

and the incompressible calculations.

In incompressible simulations, [Schwarz (1996)] found that for the global Reynolds number

ReD = 1,000 the flow field includes a region of absolute instability with regard to helical distur-

bances of the first azimuthal Fourier mode. Figure 4.12 shows the time response of the radial

momentum at the centerline in the near wake, half a radius downstream of the base. In this

case, the disturbance was generated through blowing and suction. The response clearly shows an

exponential growth of the disturbance, which indicates the existence of an absolute instability,

as has been found in the incompressible simulations.

For a second calculation (case T2), a disturbance was generated by a single pulse in the

near wake region, as explained before. Figure 4.13 shows the time response of the flow in the

form of the radial momentum of four different azimuthal Fourier modes at the location of the

disturbance input. In this case the flow starts to deviate from the axisymmetric state and

the signal keeps oscillating in time in a non-periodic fashion. This was also observed for the

incompressible calculations. From this point, quantitative comparison is not very meaningful,

since the fluctuations are not periodic.

Therefore, the comparison of the instantaneous flow field with experiments and incompress-

ible simulations can only be of a qualitative nature. For this qualitative comparison, particles
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Figure 4.12: Time response of radial momentum at r=0 to a three dimensional blowing and

suction pulse disturbance in the near wake at M,, = 0.2 and ReD = 1,000.

have been released into the flow. The method is described in section 5.1.1. Figure 4.14 shows

side views of the instantaneous flow field. The views are perpendicular to each other. They show

that the flow is symmetric to the x-y plane (9 = 0). This phenomenon could also be observed

in experiments and incompressible simulations as presented by Schwarz.

Comparing the structures to pictures shown in Schwarz (1996) a good similarity in the shape

of the structures is seen. For further simulations this symmetry was prescribed, so that only

half of the points in physical space need to be calculated and main memory and CPU time are

saved. In figure 4.15, cuts through the y-z plane at four different x locations are presented.

The plots show structures very similar to the structures that have been observed in water

channel experiments by [Siegel (1994)] [see, for example, figure 4.16]. To further investigate the

development of the disturbances and allow a better comparison with the experimental results,

the flow was disturbed by a periodic disturbance [see section 4.2.2].
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Figure 4.13: Time response of radial momentum to a single pulse of Fourier mode k = 1 at

r=0.25 and z= 0.25 at Mc, = 0.2 and PeD = 1,000.
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Figure 4.14: Flow visualization via particles at M,,= 0.2 and ReD 1,000, viewed from

0 = 7'/2 (top) and from 0 = 0 (bottom).
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Figure 4.15: Flow visualization via particles at M,,. 0.2 and ReD =1,000, cross-sectional cut

at x =2.0.

". -

Figure 4.16: Flow visualization via particles for ReD = 1, 000, cross-sectional cut at x = 2.0

(water channel experiment by Siegel (1994).



CHAPTER 4. CODE VALIDATION 59

4.2.2 Periodic Disturbances

In order perform a quantitative comparison with the experimental results the same flow field

as above (case Al) was disturbed continuously with a fixed disturbance frequency (case A3).

For the generation of the periodic disturbances, the blowing and suction slot was used. The

disturbances consisted purely of azimuthal modes k = -1 and k = 1, resembling two counter-

rotating disturbances of the first helical Fourier mode. The Strouhal number of the disturbance

based on the free stream velocity and the base diameter was chosen to

RtD = fD = 0.159. (4.8)
U.

A first attempt, using a disturbance amplitude of A1,1 = 0.01 did not show any significant

influence of the disturbance on the flow field. Therefore, in a second and final calculation (T3),

a disturbance amplitude of

A 1,1 = 0.1 (4.9)

was used. The amplitude resembles the maximum blowing and suction velocity, based on the

free stream velocity.

0.4

0.2

S... ... . .'".i• ".i;•'''',....•.;:;-,.•

t -- k=2

JiW

Sii............ k 2
- -- k=3
--- -. k=4

-0.4 I ,
0.0 100.0 200.0 300.0 400.0 500.0

time

Figure 4.17: Time response of total vorticity to a periodic disturbance of Fourier mode k = 1

with RD = 0.159 and A = 0.1 at M. = 0.2 and ReD = 1,000 (x = 0.25, r = 0.25).

The local time response of the total vorticity at a point within the recirculating region

(x = 0.25, r = 0.25) is shown in figure 4.17. The generation of a small amplitude disturbance

(Ai, = 0.01) was started at the beginning of the calculation (t = 70). As mentioned earlier, the
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flow did not show any visible reaction to the disturbance (see figure 4.17). The signal remains

non-periodic. At a later stage (t = 250) the amplitude was raised to the final value. After

several time periods the response of the flow becomes periodic with the same frequency as the

generated disturbance (see figure 4.17). At this point, the structures also appear in a periodic

fashion.
For a first validation, the periodic flow was calculated over two time periods for three different

spatial resolutions. The different parameters are shown in table A.2 for the cases T3 through

T5. The results for the three different cases were Fourier transformed in time to separate the

fundamental disturbance frequency and its higher harmonics. Figures 4.18 through 4.21 show

the resulting velocity fields for the several Fourier modes in time and azimuthal direction for

the three different cases. It appears that they all compare very well in the region immediately

downstream of the base. Further downstream the results for the different cases show small but

noticeable differences. This is due to the grid stretching, which results in a lower resolution in

the region further downstream. This inaccuracy, however, does not seem to affect the solution
in the near wake region. Therefore, for further comparison with the experiments the lower

resolution case was used.

Because of the lower resolution, all simulations could be performed on a single processor of

a Silicon Graphics Power Challenge at the Computational Fluid Dynamics Laboratory of the

Aerospace and Engineering Department at the University of Arizona. A typical simulation used

about 20 CPU hours for the calculation of one time period.

X

-90

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

x

o ..

S105 
7 .0 8 .0 9 .0 1 0.o 1 1 .0

.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Figure 4.18: Isolines of the mean of axial velocity for three different spatial resolutions for

Moo = 0.2 and ReD = 1,000 [cases T3 (top) through T5 (bottom)].
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Figure 4.19: Isolines of the fundamental of first azimuthal mode of axial velocity for three dif-

ferent spatial resolutions for M,, = 0.2 and ReD = 1, 000 [cases T3 (top) through T5 (bottom)].

In the experiment, which was conducted in the water channel at the Hydrodynamics Lab-

oratory of the Aerospace and Mechanical Engineering Department by [Siegel (1996)], the flow

was disturbed using a vibrating ribbon. The Strouhal number was the same as for the numerical

simulation. However, the amplitude of the disturbance in the experiment was not determined.
As in the numerical simulation, the flow becomes periodic after several periods of the generated

disturbance. In addition, the structures appeared to remain symmetric to the symmetry plane

of the vibrating ribbon. Thus, the plane of symmetry was fixed, in contrast to the self excited

axisymmetric wake.

For a comparison between the simulations and the experiments, velocity measurements were
made at a cross section which was about 3.5 diameters downstream of the blunt base. For

the measurements a hot film anemometer was used. This allowed only a measurement of the

combination of two velocity components. The hot film probe was directed such that in the plane

of symmetry it would measure the combination of axial and radial velocity. Thus, results were

compared for the combined quantity

q= V +2 V. (4.10)

The measured data, as well as the calculated results, were Fourier transformed in time in
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Figure 4.20: Isolines of the fundamental of first azimuthal mode of radial velocity for three dif-

ferent spatial resolutions for M,, = 0.2 and ReD = 1,000 [cases T3 (top) through T5 (bottom)].

order to separate the amplitudes of the fundamental disturbance frequency and its higher har-

monics, as mentioned earlier. Figures 4.22 through 4.25 show the mean flow and the amplitude

distribution over the radius for q of the fundamental, the first, and the second higher harmonic

at the cross section x = 3.5. As these figures show, the results compare very well, in spite of

the different disturbance methods used in the experiment and the simulation. At this point it is

unclear why the maximum at the axis of symmetry for the first harmonic shows appears to be

lower for the numerical simulation. A possible explanation could be the low resolution near the

axis due to the grid stretching or insufficient data points in time for the Fourier transformation.

In summary, it was found that with the compressible code it is possible to accurately calcu-

late axisymmetric and three-dimensional flow fields for a subsonic Mach number of M', = 0.2.

Exceptionally good agreement was found with the water channel experiments by Siegel (1996)

and the incompressible simulations by [Schwarz (1996)]. Further, it was found that the com-

pressible simulation can be a valuable tool for the calculation of incompressible wake flow fields.

As mentioned earlier, all simulations were performed on a single processor of a Silicon Graphics

Inc. Power Challenge L with 4 R8000 CPUs (90 MHz, 4MB cache each) and 512 MBytes of

main memory.



CHAPTER 4. CODE VALIDATION 63

SI I I I I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
X

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

x

Figure 4.21: Isolines of the fundamental of first azimuthal mode of azimuthal velocity for three

different spatial resolutions for M, = 0.2 and ReD - 1,000 [cases T3 (top) through T5 (bot-

tom)].
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Figure 4.22: Mean flow profiles for Mc, = 0.2 and ReD = 1,000 at x = 3.5.
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Figure 4.23: Normalized amplitude distribution of fundamental disturbance frequency for M, =

0.2 and ReD = 1,000 at x - 3.5.
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Figure 4.24: Normalized amplitude distribution of first higher harmonic of disturbance frequency

for M.. = 0.2 and ReD = 1,000 at x = 3.5.
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Figure 4.25: Normalized amplitude distribution of second higher harmonic of disturbance fre-

quency for M, = 0.2 and ReD = 1,000 at x = 3.5.
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4.3 Large-Eddy Simulation

A preliminary validation for the LES code was performed for a free stream Mach number of

M,, = 0.2 and a global Reynolds number of P&D = 2,000. As before, the results were directly

compared qualitatively to experimental measurements obtained in the water channel of the

Hydrodynamics Laboratory of the Aerospace and Mechanical Engineering Department at the

University of Arizona by [Siegel (1996)]. The experiments have shown that the flow is fully

turbulent and exhibits large coherent structures, which are very similar to the laminar structures

that appeared at MeD = 1,000.

For the numerical simulation, at first the flow field was calculated with DNS in exactly the

same way as the flow at MeD = 1,000. During the initial stage a periodic disturbance in the first

azimuthal mode was generated through the blowing and suction slot. After five time periods

the disturbance was ramped down to zero. Figure 4.26 shows the time response of the flow at

x = 0.25 and r = 0.25 in form of the total azimuthal vorticity for the first five periods in time.

As for the lower Reynolds number case, the disturbance grows exponentially in time.
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Figure 4.26: Initital time response of total azimuthal vorticity to a single pulse disturbance of

Fourier mode k = 1 at r=0.25 and z= 0.25.

In contrast to the lower Reynolds number case, however, the structures that appear in the

free shear layer became too small for the spatial resolution of the DNS. This resulted in high

local gradients. Shortly after t = 72 the calculation was underresolved and terminated. At this
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point the simulation was continued with the LES code, using the same spatial resolution as

before for the DNS. Figure 4.27 shows the continued response of the flow at the same location

as before. As for the laminar case, the response remains highly unsteady and non-periodic even

though the flow is not disturbed any further.
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Figure 4.27: Time response of total azimuthal vorticity to a single pulse disturbance of Fourier

mode k = 1 at r=0.25 and z= 0.25.

At this point, large coherent structures appear as shown, for example, in figure 4.28 in the

form of isolines of instantaneous total vorticity. The structures look very similar to the laminar

structures for the lower Reynolds number case. In addition, flow visualization via particles shows

that the larger structures are similar to the structures that were observed in the water channel

experiments (see figure 4.29)..

More code validation for the LES code is needed at this point, especially for supersonic flows.

So far, flow fields at a supersonic Mach number of Md = 2.46 and global Reynolds numbers up

to Pei = 400, 000 have been calculated (see chapter 7). In order to perform a direct comparison

with experiments, however, flows at higher Reynolds numbers (cs = 0(1, 000, 000)) need to

be calculated.

Therefore, in the present work only preliminary results are presented for the LES calculations

of the higher Reynolds number (turbulent) supersonic flow fields.
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Figure 4.28: Isolines of total vorticity at M,,c = 0.2 and PeD =2, 000 at 0 0 (top) and 0 = r/2

(bottom).
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Figure 4.29: Flow visualization using particles for M,,,, 0.2 and ReD 2, 000; simulation (top)

and water channel experiment by Siegel (1994) (bottom).



Chapter 5

Results

Three-dimensional unsteady flow fields of the wake of an axsymmetric bluff body with a blunt

base have been calculated for several combinations of free stream Mach number and global

Reynolds number. The main goal for the present calculations was to investigate the existence
of large structures and their influence and significance on the characteristics of the global flow

field. As a first step, Direct Numerical Simulations (DNS) were performed to investigate the time
dependent behavior of laminar flows in order to determine the existence of absolute instabilities

and investigate the evolution of large structures in laminar wake flows and their effect on the
global flow field. Secondly, although preliminary, the calculations were extended to turbulent

flows by employing Large-Eddy Simulations (LES) in order to investigate if absolute instabilities
also exist and if large coherent structures are also present in turbulent supersonic wake flows.

5.1 Direct Numerical Simulations

As pointed out earlier, the incompressible wake of axisymmetric bodies at a global Reynolds

number of reD = 1,000 is subject to an absolute instability in the first helical Fourier mode. As a
result, the flow is highly unsteady and dominated by large structures. However, the flow remains
laminar at all times and does not undergo transition to turbulence. From previous investigations

[see, for example, [Schwarz (1996)] and Siegel (1994)] there is a basis of knowledge about the

evolution of large structures in the incompressible wake. For that reason, the low Mach number
subsonic flow has been used for code validation and is also used here for comparison of the

evolution of the structures in supersonic flows. In the following sections results from DNS axe
presented for three different free stream Mach numbers, M, = 0.2, Mýý = 1.2, and M. = 2.46.

5.1.1 Subsonic Flow

a) Steady Calculations

The subsonic flow field, that has been evaluated for validation of the DNS code (cases Al

and T3 through T5) is presented here to provide a basis for comparison of the results with

70
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supersonic wake flows. First, additional information on the steady axisymmetric flow field is

provided in form of isolines of axial velocity, radial velocity, pressure, density, and temperature.

These results are shown in figures 5.1 through 5.5.

0 1

.1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 5.1: Isolines of axial velocity for M -= 0.2 and &eD = 1, 000 (axisymmetric unforced

calculation).
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Figure 5.2: Isolines of radial velocity for M, = 0.2 and ReD = 1,000 (axisymmetric unforced

calculation).
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Figure 5.3: Isolines of pressure for M, = 0.2 and ReD = 1,000 (axisymmetric unforced calcula-

tion).

The most important feature at this point can be seen in the pressure distribution (figure 5.3.

The graph clearly shows the strong pressure drop immediately downstream of the base, which

is responsible for the base drag. However, as will be seen in the following sections, the pressure

drop is much more pronounced in supersonic flow fields. In addition, the plot reveals an elevated

pressure at the base near the axis of symmetry. This can be explained by the stagnation point

flow behavior of the recirculating region. This results in the typical base pressure distribution

as shown in figure 5.19.

b) Unsteady Calculations
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Figure 5.4: Isolines of density for M. = 0.2 and ReD = 1,000 (axisymmetric unforced calcula-

tion).
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Figure 5.5: Isolines of temperature for M,, = 0.2 and ReD = 1,000 (axisymmetric unforced

calculation).

As mentioned in the discussion concerning code validation in section 4.3, for the DNS of the

three-dimensional unsteady wake the flow was disturbed by a single pulse disturbance locally

within the recirculating region at the location

Xdist = 0.25 and rdist = 0.25, (5.1)

as described in section 3.7. The time dependent response of the flow field at the location

of the disturbance is shown in figure 4.13. After a period of time, the signal deviates from

the axisymmetric state and starts oscillating in a non-periodic fashion. At this point, large

structures are present in the flow.

Four different methods are used here for the identification of vortical structures in the flow

field:

"* Isolines of instantaneous total vorticity shown in different planes, the x-y plane and the x-z

plane through the axis of symmetry, and the y-z plane at 4 different x locations (x = 1.0,

x = 2.0, x = 3.0, and x = 4.0).

"* Visualization of the instantaneous flow field using particles.

"* Isosurfaces of instantaneous total vorticity, axial vorticity, and azimuthal vorticity.

"* Isosurfaces of instantaneous pressure deviation from the time-averaged flow field.

Figure 5.6 shows isolines of instantaneous total vorticity in two planes perpendicular to each

other. The figure reveals that the flow remains symmetric in the second plane. This plane
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Figure 5.6: Instantaneous total vorticity for ReD = 1,000 and M, = 0.2. x-z plane (top) and

x-y plane (bottom).

of symmetry has also been observed in the incompressible calculations and in water channel

experiments. Therefore, in order to save computer resources a plane symmetry was prescribed

in all following calculations.

Strong vortical structures appear which originate near the corner of the base and are con-

vected downstream. These structures have also been observed in water channel experiments.

Figure 5.7 shows isolines of the total vorticity at axial cross-sections at four different x locations.

The figures clearly indicate two strong maxima of total vorticity at every cross-section. However,

some cross-sections exhibit more than two local maxima (for example at x = 3). The structure

of the axial vortices will become clearer when looking only at the axial vorticity, which is shown

in the next series of figures.

Figures 5.8 through 5.10 show isosurfaces of total vorticity, azimuthal vorticity and total

axial vorticity, respectively. Comparing the total vorticity with the azimuthal vorticity, which

are both shown at the same level of Iwi = 3.0, reveals that the ring-shaped structure consists
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Figure 5.7: Instantaneous total vorticity for PeD = 1,000 and Moo = 0.2, y-z planes at x = 1

(top left), x = 2 (top right), x = 3 (bottom left), and x = 4 (bottom right).

mainly of azimuthal vorticity. This structure is followed by two structures of axial vorticity

(shown here at 1w.l = 1.0), which are counter-rotating. The connection between the two types

of structures becomes clearer when looking at figure 5.11. Here the isosurface of instantaneous

pressure deviation from the time-averaged flow field is shown (for Ap = -0.02). The figure

shows, that two ring-shaped structures are connected by two axial structures.
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Figure 5.8: Isosurfaces of instantaneous total vorticity (Iwl = 3.0) for M. 0.2, ReD = 1,000.

Figure 5.9: Isosurfaces of instantaneous axial vorticity (IwI = 1.0) for M. = 0.2, ReD = 1,000.

For a direct comparison with flow visualization in water channel experiments that were

carried out by Siegel (1994), particles have been introduced into the flow during the numerical

simulations. The locations of the particles are updated at every time step during the numerical

simulation. The release of new particles is triggered at a specified number of time steps (typically

every 16 to 64 steps). The particles are released at a ring near the corner of the base, such that

they enter the recirculation region close to the center of the shear layer. This resembles the

introduction of dye at the corner of the base in the water channel experiments.

In figure 4.14 the flow field is shown for two side views perpendicular to each other. As before,

the figures show the symmetry to the x-y plane and the appearance of a ring-like structure

followed by two axial vortices. In figure 4.15 particles are shown at x locations x = 1.0, x = 2.0,

x = 3.0, and x = 4.0. This method is similar to a laser sheet illumination of fluorescent dye

in a water channel experiment. Again the figures reveal the symmetry to the x-y plane and

clearly shows the two rollups which result from a superposition of a k = 1 and a k = -1

helical disturbance mode. Similar structures have been observed in water channel experiments

when using a laser sheet illumination technique at cross sections in the y-z plane (compare, for

example, figure 5.17).

The three-dimensional time dependent results show that there is a strong unsteady part in

the flow. Large structures are present. In order to investigate the influence of the structures on



CHAPTER 5. RESULTS 76

Figure 5.10: Isosurfaces of instantaneous azimuthal vorticity (Iwol = 3.0) for Mo . 0.2, &eD -

1,000.

Figure 5.11: Isosurfaces of instantaneous pressure deviation from the time-averaged mean flow

(Ap = -0.02) for Mo, = 0.2, ReD = 1,000.

the global flow field, a time average is performed over a time period from t = 80 to t = 150.
Figures 5.12 through 5.18 show isolines of axial velocity, radial velocity, pressure, density, tem-
perature, azimuthal vorticity and stream lines for the time-averaged flow field, respectively. The
strongest changes compared to the axisymmetric steady flow are noticeable in the distribution
of the pressure and the density. The streamlines reveal that the recirculation region for the
time-averaged flow field is only 1.8 diameters long, compared to the recirculation length of 2.1

diameters for the steady flow.
The pressure distribution along the base has become almost constant, in contrast to the

steady calculation which exhibits a strong maximum at the axis of symmetry (see figure 5.19).
This phenomenon is even more pronounced in the case of supersonic flows, as will be shown in

the following sections.
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Figure 5.12: Isolines of axial velocity for the time-averaged flow of M , = 0.2 and ReD = 1,000.
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Figure 5.13: Isolines of radial velocity for the time-averaged flow of Mo = 0.2 and ReD = 1,000
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Figure 5.15: Isolines of prenssure for the time-averaged flow of M.• 0.2 and -ReD •-"1, 000
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Figure 5.14: Isolines of pemsture for the time-averaged flow of M ,) = 0.2 and R&D - 1,000
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Figure 5.16: Isolines of temperature for the time-averaged flow of M• = 0.2 and ReD = 1,000
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Figure 5.17: Isolines of azimuthal vorticity for the time-averaged flow of M, = 0.2 and ReD =

1,000
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Figure 5.18: Streamlines for the time-averaged flow of M, = 0.2 and ReD = 1,000
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Figure 5.19: Base pressure distributions for M,, = 0.2 and ReD = 1,000.
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5.1.2 Supersonic Flow at Mach 1.2

For the first simulation of a supersonic wake the free stream Mach number was Mo, = 1.2 and

the global Reynolds number was PeD = 4,000 (cases A6 and T6).

a) Steady Calculations

As for the subsonic case, at first a steady axisymmetric flow was calculated. The resulting

flow field is shown in figures 5.20 through 5.26 in form of isolines of axial velocity, radial velocity,

streamlines, pressure, density, temperature, and azimuthal vorticity, respectively. The figures

indicate that the features of the supersonic flow are different from its subsonic counterpart.

b: r .0 -0.5 0.0 0'5 1.0 1'5 2'0 2'5 3.0 3.5 4.0 4.5
X

Figure 5.20: Isolines of axial velocity for M.. = 1.2 and ReD = 4,000 (axisymmetric steady

calculation).
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Figure 5.21: Isolines of radial velocity for M,, = 1.2 and ReD = 4,000 (axisymmetric steady

calculation).

The figures for the axial velocity do not show significant differences from the subsonic flow.

The approaching boundary layer was thinner at the corner for the supersonic flow, as can be

seen in figure 5.20. This is determined by the prescribed inflow condition. The radial velocity,

however, looks different for the different Mach numbers. Here, the area of negative velocity

above the free shear layer extends farther upstream than for the subsonic calculation. It also

reveals the existence of expansion waves. The streamlines, shown in figure 5.22, have very similar

shapes to the ones of the subsonic flow, with the exception that the curvature of the separating

streamline is much weaker for the supersonic case.

The largest difference can be observed in the pressure distribution. Figure 5.23 clearly shows

the regions of expansion and of weak re-compression which, of course, are not present in the

subsonic flow. In addition, the change in pressure is much stronger for the supersonic flow. This
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Figure 5.22: Steady streamlines for M. = 1.2 and ReD = 4,000 (axisymmetric steady calcula-

tion).
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Figure 5.23: Isolines of pressure for M,, = 1.2 and ReD = 4,000 (axisymmetric steady calcula-

tion).

results in a much higher base pressure drag, which agrees with observations from experiments

(see, for example, [Rollstin (1987)]). Similar features as in the pressure can be seen in the density
and temperature distribution, which both show a much stronger variation for the supersonic flow

than for the subsonic flow.
The isolines of azimuthal vorticity look very similar to those of the subsonic flow. However,

the absolute values of the vorticity are much higher for the present case.

b) Unsteady Calculations

Similar to the subsonic calculation, as discussed in the preceding section, the flow was dis-

turbed locally with a single pulse disturbance. The location of the disturbance introduction was
at r = 0.25 and x = 0.25. Figure 5.27 shows the time signal of the radial momentum at the
location of the disturbance introduction for Fourier modes k = 0, k = 1, and k = 2. The signal
exhibits a behavior similar to that observed for the subsonic calculation. After some time the
signal deviates from the axisymmetric state and starts oscillating in a non-periodic fashion.

On a logarithmic scale, which is shown in figure 5.28, the signal of the radial momentum at
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Figure 5.24: Isolines of density for M,, = 1.2 and &iD = 4, 000 (axisymmetric steady calcula-

tion).

p.

"ý-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 5.25: Isolines of temperature for M. = 1.2 and ReD = 4,000 (axisymmetric steady

calculation).

r = 0.25 and x = 0.25 exhibits an exponential deviation from the axisymmetric state until a state

of nonlinear saturation is reached. This is a clear indication that an absolute instability exists.

In the following, the response of the flow is further studied in the same fashion as discussed for

the subsonic flow field. Figures 5.29 through 5.31 show isolines of instantaneous total vorticity

for different time instances. This series reveals the development of vortical structures which

originate near the corner of the base and increase in strength while being convected downstream.

The structures appear to be similar to the ones observed in the subsonic case, except that they

have a much higher concentration of vorticity. In addition, a layer of high vorticity develops

near the center line farther upstream (see figure 5.31).

As for the subsonic case, the figures reveal the existence of a plane of symmetry as shown in

figures 5.32 through 5.34 in which isolines of instantaneous total vorticity in the x-y plane are

0-11.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 41.5

X

Figure 5.26: Isolines of azimuthal vorticity field for MX = 1.2 and ReD = 4,000 (axisymmetric

steady calculation).
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Figure 5.27: Time response of radial momentum to a single pulse of Fourier mode k = 1 at

r = 0.25 and x = 0.25 at M.. = 1.2 and ReD = 4,000.

plotted at four different x locations. These plots reveal that in addition to the high concentration

of vorticity at two locations in a cross section, locations of high concentration of vorticity are also
present closer to the axis. These phenomena were also observed for the subsonic case. The three-

dimensional shape of the vortical structures can be seen more clearly in figures 5.35 through 5.38,
where isosurfaces of instantaneous total vorticity, azimuthal vorticity, axial vorticity and pressure

deviation from the time-averaged mean flow are plotted, respectively. As for the subsonic case,
the total vorticity and the azimuthal vorticity exhibit ring-shaped structures, which are followed
by a pair of axial vortices of lesser strength (see figure 5.36).

Flow visualization by particle introduction as shown in figures 5.39 through 5.40, also reveals
the structures. As before, the particles were introduced at a ring near the corner of the base.
However, the structures are not as clearly noticeable as in the subsonic case. To date there
have been no visualization experiments for flows at this Mach number. Therefore, no direct

comparison is possible to experimental observation.
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Figure 5.28: Time response of radial momentum to a single pulse of Fourier mode k = 1 at

r = 0.25 and x = 0.25 on a logarithmic scale at M, -- 1.2 and ReD = 4,000.
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Figure 5.29: Isolines of instantaneous total votticity for &eD = 4,000 and Mo, = 1.2, at 0 = 0

(top) and 0 = 7r/2 (bottom) at t = 121.34.



CHAPTER 5. RESULTS 85

-1.0 -0.5 0.0 0.5 1.'0 1.5 2.0 2.5 3.0 31.5 4.0 4.5

Figure 5.30: Isolines of instantaneous total vo~icity for FeD = 4, 000 and M,, = 1.2, at 0 0
(top) and 0 = ir/2 (bottom) at t = 127.84.
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Figure 5.31: Isolines of instantaneous total vo~ticity for PeD = 4,000 and M,, = 1.2, at 9 = 0

(top) and 0 = 7r/2 (bottom) at t = 135.09.
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Figure 5.32: Isolines ofzinstantaneous total vorticity for &eD =4, 0}00 andMc = 1.2, y-z planes

at x = 1 (top left), x = 2 (top right), x = 3 (bottom left), and x = 4 (bottom right) at

t = 121.34.
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Figure 5.33: Isolines ofzinstantaneous total vorticity for &eD = 4, 000 and M, = 1.2, y-z planes

at x = 1 (top left), x = 2 (top right), x = 3 (bottom left), and x = 4 (bottom right) at

t = 127.84.



CHAPTER 5. RESULTS ' 89

-0.8 -0.4 0.0 0.4 0.8 -0.8 -0.4 0.0 0.4 0.8

z z

o C

~ (I

6i

-0.8 -0.4 0.0 0.4 0.8 -0.8 -0.4 0.0 0.4 O.8

Figure 5.34: Isolines ofzinstantaneous total vorticity for ReD = 4,f000 and Moo, = 1.2, y-z planes

at x = 1 (top left), x = 2 (top right), x = 3 (bottom left), and x = 4 (bottom right) at

t = 135.09.

Figure 5.35: Isosurfaces of instantaneous total vorticity (Iwl = 6) for Mc = 1.2, ReD = 4, 000 at

t = 135.09.
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Figure 5.36: Isosurfaces of instantaneous axial vorticity (IwI 1 2) for M, = 1.2, ReD = 4,000

at t = 135.09.

Figure 5.37: Isosurfaces of instantaneous azimuthal vorticity (Iwo I = 6) for M, = 1.2,-ReD =

4, 000 at t = 135.09.

Figure 5.38: Isosurfaces of instantaneous pressure deviation from the time-averaged mean flow

(Ap = -0.02) for M, = 1.2, ReD = 4, 000 at t = 135.09.
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Figure 5.39: Flow visualization of instantaneous flow field via particles for Mo, 1.2 and

ReD = 4, 000, viewed from 9 = 7r/2 (top) and from 0 0 (bottom) (particles introduced at

x = 0.025, r 0.475).

• ... :,:•:•....... .. .....

Figure 5.40: Flow visualization of instantaneous flow field via particles for M'," 1.2 and

ReD = 4,000, sheets of thickness 0.01 at 0 = 0 (top) and 0 = 7r/2 (bottom), (particles introduced

at x = 0.025, r = 0.475).

The subsonic calculations have shown that the unsteady structures can have a strong in-
fluence on the global time-averaged flow. This influence was strongest in the time-averaged
pressure and the density. For the case of Moo = 1.2, isolines of the time-averaged pressure and
density are shown in figures 5.42 and 5.43, respectively. They indicate that the distribution of

the pressure and the density along the base is almost constant. This finding is in good agreement

with experimental observations of turbulent supersonic axisymmetric wake flows. The difference
between the steady axisymmetric and the time-averaged base pressure is again obvious from fig-

ure 5.44. Here the pressure is normalized by the free stream static pressure. The plot shows
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Figure 5.41: Flow visualization of instantaneous flow field via particles for M, = 1.2 and

ReD = 4, 000, cross-sectional cuts of thickness 0.01 at x = 1.0, x = 2.0, x = 3.0, and x = 4.0

(particles introduced at x = 0.025, r = 0.475).
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Figure 5.42: Isolines of pressure for a time-averaged flow at M...= 1.2 and ReD = 4, 000.

that, in addition to a change in shape of the pressure distribution, the average pressure is lower

than the average of the steady axisymmetric: pressure. This results in a larger base drag, which

is caused solely by the unsteady structures.

In summary, the supersonic flow for M,, -- 1.2 and MD --= 4, 000 shows a behavior that

is somewhat similar to that presented previously for the subsonic case. The flow exhibits an

absolute instability, which results in the formation of unsteady structures. These structures have

a strong influence on the pressure distribution of the time-averaged flow, resulting in a constant

base pressure distribution as found in experiments, and a higher base drag than for the steady

axisymmetric calculation. The absolute instability causes an exponentially growing deviation

from the axisymmetric flow. After a period of time the deviation reaches a nonlinear saturation

and the flow field fluctuates in a non periodic way. The unsteady flow remains laminar and does

not show any sign of a transition to turbulence.
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Figure 5.43: Isolines of density for a time-averaged flow at Mo = 1.2 and PeD = 4,000.
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Figure 5.44: Base pressure distributions for Mo = 1.2 and ReD = 4,000.

5.1.3 Supersonic Flow at Mach 2.46

The flow field of case A4, which was calculated for the validation of the DNS code for axisym-

metric flow calculations (see section 4.1.2), was used as initial condition for further investigations

of the time dependent behavior of the three-dimensional flow.

a) Steady Calculations

In addition to the results presented for the steady axisymmetric flow field in chapter 4,

figures 5.45 and 5.46 show the streamlines and isolines of vorticity, respectively. As pointed out

in the previous section for the flow with free stream Mach number Moo = 1.2, the plot of the

streamlines reveals that the curvature of the streamline dividing the recirculating region from

the outer region is much smaller for supersonic flow. For the present case at Mo = 2.46, the

dividing streamline is almost a straight line.

Also, as already mentioned in the previous section, the pressure distribution is significantly

different for the subsonic and supersonic case. This difference becomes even more pronounced

for the higher Mach number (comparison of figure 4.9 with figures 5.23 and 5.3). The overall
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variation of the pressure is much larger for this case than for the previously shown results. The

same effect can be seen in the base pressure variation, which results in a higher base drag for

higher free stream Mach numbers. This is indicated by the base pressure distributions shown. in

figures 5.74, 5.44, and 5.19. The azimuthal vorticity, however, shows very similar characteristics

to both flow fields shown previously.
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Figure 5.45: Steady streamlines for Mo, = 2.46 and ReD = 30, 000 (axisymmetric steady calcu-

lation).
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b) Unsteady Calculations

In calculations for a free stream Mach number of Mc• = 2.46 [Tourbier & Fasel (1994)], no

absolute instability could be observed up to a global Reynolds number of ReD = 3,000. Even

when increasing the Reynolds number up to ReD •- 25,000 in subsequent calculations, there

was no indication of an absolute instability. For all cases with Reynolds numbers lower than

P•D -•- 30,000 a generated pulse disturbance always decayed in time and the flow field eventually

relaxed to the original axisymmetric steady state. The unsteady flow behavior in all these cases

was similar to that presented by Tourbier & Fasel (1994). The main difference was that the

temporal decay rates of the disturbances decreased for increasing Reynolds numbers. This is

an indication that the flow becomes less stable when the Reynolds number is increased. Here,

results of a DNS are presented a global Reynolds number P•D = 30,000.
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Figure 5.47: Time response of radial momentum to a single pulse of Fourier mode k = 1 at

r = 0.25 and x = 0.25 for Mc• = 2.46 and ReD = 30, 000 (unfiltered DNS).

The axisymmetric flow was disturbed with a single pulse disturbance at x -- 0.25 and r =

0.25. The time signal at the location of the disturbance introduction is shown in figure 5.47. As

for both the subsonic case and the supersonic case with M• -- 1.2, the azimuthal decomposition

of the time signal exhibits an exponential deviation from the axisymmetric state. Figure 5.47
shows that the Fourier mode k = 1 is not the most amplified for this flow; k = 2, k = 3,

and k -- 4 show stronger amplification rates. When the first four Fourier modes pass a certain

threshold, the higher Fourier modes (k = 5, k = 6, k = 7, and k = 8) also exhibit strong

amplification.

In contrast to the two cases discussed previously, local velocity gradients near the stagnation

point (x • 2.8) kept increasing over time to very high levels. Eventually, the simulation became

underresolved and terminated at about t -- 125. Figures 5.48 and 5.49 show instantaneous

isolines of total vorticity shortly before the simulation terminated. At this point the flow field
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exhibits large and small scale structures (see figure 5.48). The simulation is no longer able to
handle the large gradients in the flow field, which causes numerical instabilities and finally a
termination of the calculation. Also, as can be seen in figure 5.47, all azimuthal Fourier modes
fill up rapidly and even the higher modes grow up to the same order of magnitude. All of this is
an indication that the spatial resolution of the simulation is inadequate for the occurring small
scale structures.

Because of the appearance of small scale structures that could not be resolved with a feasible
number of grid points and Fourier modes (for a reasonable computation time on the computer
that was used) the flow field was filtered in the axial and radial directions at every time step of the
Runge-Kutta integration scheme. For this procedure a sixth-order accurate compact difference
filter was applied, which is described in Lele (1992). This filter has been used successfully
for Large-Eddy Simulations of incompressible boundary layer flows [Bachman (1996)) and has
also been applied for LES in the present work (see section 3.6). In addition, the flow field
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(unfiltered DNS).

was also filtered at every hundredth time step with an explicit second order central difference

filter, because the dissipation provided by the sixth-order compact filter was not sufficient to

completely suppress the growth of small scales.

The time signal at the location of the disturbance generation after the introduction of the

spatial filtering is shown in figure 5.50. Even with the added dissipation of the filtering the flow

field still exhibits non-periodic fluctuations in all Fourier modes that do not decay. In figures

5.51) 5.52, and 5.53 isolines of total vorticity are plotted in the x-y plane and the x-z plane

for the spatially filtered calculations for three different instances in time. As for the previous

calculations, the figures vortical structures appear in the free shear layer which originate near

the corner of the base and are convected downstream. In contrast to the previous cases, the'

structures are more confined to the shear layer region. This is confirmed by figures 5.54, 5.55,
and 5.56 which show isolines of total vorticity in the y-z plane at four different x locations.

The structures that axe similar to the ones observed for the lower Mach number cases are now
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Figure 5.50: Time signal of radial momentum at r = 0.25 and x = 0.25 for Moo = 2.46 and

ReD = 30,000 (filtered DNS).

located entirely within the top shear layer. The three-dimensional structures can be seen more

clearly in the three-dimensional isosurfaces in figures 5.57 through 5.68. The isosurface for the

instantaneous pressure deviation from the time-averaged flow is shown at Ap = -0.02 which

represents the same level as for the previous cases. It appears that there are still two axial

vortices present. The vorticity structures indicate that for this case the level of vorticity is much

higher than in the previous two cases. Also, the structures appear to be much thinner and

more elongated in the axial direction. Figure 5.65 shows two long axial vortices which are much

stronger and much thinner than for the cases with Moo -- 0.2 and Moo -- 1.2.

Flow visualization using particles as shown in figures 5.69 through 5.71 was performed similar

to the subsonic case. As before, the particles were introduced at a ring near the corner of the

base (x -- 0.025, r = 0.475). The plots do not indicate the structures as clearly as in the cases

for Moo -- 0.2 and Moo = 1.2. The cross-sectional cuts, however, indicate that the longitudinal

vortices are more confined in the shear layer than for the cases with Moo -- 0.2 and Moo -- 1.2.
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Figure 5.51: Isolines of instantaneous total vorticity for ReD = 30,000 and M. = 2.46 at

t = 174.35, x-z plane (top) and x-y plane (bottom) (filtered DNS).
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Figure 5.52: Isolines of instantaneous total vorticity for ReD = 30,000 and MW = 2.46 at

t = 176.35, x-z plane (top) and x-y plane (bottom) (filtered DNS).
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Figure 5.53: Isolines of instantaneous total vorticity for ReD = 30, 000 and M. 2.46 at

t = 178.1, x-z plane (top) and x-y plane (bottom) (filtered DNS).
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Figure 5.54: Isolines of instantaneous total vorticity for ReD =30, 000 and M"• 2.46 at
t = 174.35, y-z planes at x = 1 (top left), x = 2 (top right), x =3 (bottom left), and x = 4

(bottom right) (filtered DNS).
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Figure 5.55: Isolines of instantaneous total vorticity for ReD = 30,000 and M, = 2.46 at

t = 176.35, y-z planes at x = 1 (top left), x = 2 (top right), x = 3 (bottom left), and x = 4

(bottom right) (filtered DNS).
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Figure 5.56: Isolines of instantaneous total vorticity for ReD 30, 000 and M,, = 2.46 at

t = 178.1, y-z planes at x = 1 (top left), x = 2 (top right), x = 3 (bottom left), and x = 4

(bottom right) (filtered DNS).
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Figure 5.57: Isosurfaces of instantaneous total vorticity (Iwi = 7) for M. = 2.46, ReD = 30,000

at t = 174.35 (filtered DNS).

Figure 5.58: Isosurfaces of instantaneous total vorticity (Iwl = 7) for M, = 2.46, ReD = 30, 000

at t = 176.35 (filtered DNS).

Figure 5.59: Isosurfaces of instantaneous total vorticity (Iwl = 7) for M, = 2.46, ReD = 30, 000

at t = 178.1 (filtered DNS).
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Figure 5.60: Isosurfaces of instantaneous azimuthal vorticity (Iwo = 7) for M, = 2.46, eD =

30,000 at t = 174.35 (filtered DNS).

Figure 5.61: Isosurfaces of instantaneous azimuthal vorticity (Iwol = 7) for M" = 2.46, ReD =

30,000 at t = 176.35 (filtered DNS).

Figure 5.62: Isosurfaces of instantaneous azimuthal vorticity (IwoI = 7) for M,,, 2.46, ReD =

30, 000 at t = 178.1 (filtered DNS).

Figure 5.63: Isosurfaces of instantaneous axial vorticity (Iw.xI = 4) for M, = 2.46, ReD = 30,000

at t = 174.35 (filtered DNS).
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Figure 5.64: Isosurfaces of instantaneous axial vorticity (IwxI = 4) for M• = 2.46, ReD = 30,000

at t = 176.35 (filtered DNS).

Figure 5.65: Isosurfaces of instantaneous axial vorticity (Iwzj = 4) for M. = 2.46, ReD 30,000

at t = 178.1 (filtered DNS).

Figure 5.66: Isosurfaces of instantaneous pressure deviation from the time-averaged mean flow

(Ap = -0.02) for M, = 2.46, ReD = 30,000 at t = 174.35 (filtered DNS).

Figure 5.67: Isosurfaces of instantaneous pressure deviation from the time-averaged mean flow

(Ap = -0.02) for M, = 2.46, ReD = 30,000 at t = 176.35 (filtered DNS).
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Figure 5.68: Isosurfaces of instantaneous pressure deviation from the time-averaged mean flow

(Ap = -0.02) for M, = 2.46, ReD = 30,000 at t = 178.1 (filtered DNS).
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Figure 5.69: Flow visualization of instantaneous flow field via particles for Mo -- 2.46, R&D =

30,000, viewed from 0 = 7r/2 (top) and from 9 = 0 (bottom) (particles introduced at x =

0.025, r = 0.475; filtered DNS).

The previous cases for M. = 0.2 and M. = 1.2 have shown that the unsteady structures

have a strong influence on the global time-averaged flow field. For the M,,- = 2.46 case, the

time-averaged flow is shown in figures 5.72 and 5.73 in the form of isolines of the pressure and

density. As before, the plots exhibit a drastic difference between the time-averaged flow and

the axisymmetric flow (compare figures 4.8 and 4.9). The pressure distribution in the radial

direction for the time-averaged flow is almost constant near the base. This is in agreement with

experimental observations.

Figure 5.74 shows the pressure distribution along the base normalized by the static pressure

in the free stream. The plot confirms that this is due to the presence of the large structures. The

base pressure distribution is almost constant over the radius. Averaged over the radius the base

pressure is significantly lower than for the axisymmetric steady calculation. This indicates, that

for this higher Mach number the dynamic structures also have a large influence on the global

flow field which results in a lower base pressure and, consequently, in a higher base drag.

In summary, the calculations indicate that the flow for the higher Mach number, M". = 2.46,

exhibits an absolute instability at a global Reynolds number of R&D = 30,000. As for the

subsonic case (Mw = 0.2) and the slightly supersonic case (M~o = 1.2) the absolute instability

leads to large structures. In contrast to the previous cases, the structures tend to break down

to smaller scales. This is an indication that the flow might transition to turbulence if the

calculations were better resolved. Therefore, further investigation of this flow was performed
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Figure 5.70: Flow visualization of instantaneous flow field via particles for M. = 2.46, &•D =

30, 000, sheets of thickness 0.01 at 0 = 0 (top) and 0 = 7r/2 (bottom), (particles introduced at

x = 0.025, r = 0.475; filtered DNS).

employing LES (see following section).
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Figure 5.71: Flow visualization of instantaneous flow field via particles for Mo = 2.46, &eD =

30,000, cross-sectional cuts of thickness 0.01 at x = 1.0, x 2.0, x = 3.0, and x = 4.0 (particles

introduced at x = 0.025, r = 0.475; filtered DNS).

o

-0.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

x

Figure 5.72: Isolines of pressure for the time-averaged flow at M,, = 2.46 and ReD = 30, 000.
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Figure 5.73: Isolines of density for the time-averaged flow at M... 2.46 and ReD =30, 000.
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Figure 5.74: Base pressure distributions for M,,, = 2.46 and ReD =30, 000.
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5.2 Large-Eddy Simulations

As shown in section 5.1.3, the DNS for M... = 2.46 and ReD = 30,000 without spatial filter-

ing terminated after the local velocity gradients near the stagnation points became too large.
Therefore, to extend the calculations, a spatial filter was applied in the axial and the radial

directions. The results shown in section 5.1.3 indicate that using the spatial filter (in addition
to a very dissipative second-order filter at every 100th time step) the small scale structures could

be dissipated. However, the larger structures remained in the flow field (see section 5.1.3).

The application of a second-order filter in order to dissipate the small scale structures is
physically not very meaningful. In order to investigate the true behavior of the flow field at this

Reynolds number, either a higher resolution for the DNS is necessary or a turbulence model is
required to model the unresolved scales. Since the goal is to calculate flow fields at even higher

Reynolds numbers (up to 0(106)), a much higher resolution would be required for the DNS.
However, the simulation with the spatial and temporal resolution of case T7 (see table A.3)
was already very CPU time intensive. A typical calculation for this flow field required about

600 MBytes of main memory and in the order of 500 CPU hours on a single processor of a
CRAY C90. Even more memory and CPU time would be required for calculations with higher
resolution (about 5 GBytes for twice the resolution in physical space).

As stated in the introduction, with Reynolds-Averaged Navier-Stokes (RANS) it is not pos-
sible to capture the relevant physics of this flow. Employing Large-Eddy Simulation (LES),

on the other hand, will allow investigation of the dynamics of the large structures and their
effect on the local flow behavior. The implementation of LES is discussed in section 2.4. For
the LES the same sixth-order accurate compact difference filter was applied in the axial and
radial directions (see also section 5.1.3). However, no additional second order central difference
filter was applied. The Smagorinsky constant for the sub-grid scale model was chosen to be

Cs = 0.065. This is the same value that has been used for incompressible turbulent boundary
layer calculations [[Bachman (1996)]]. It is not clear if this value is also useful for the present
case. In addition, a constant value is not realistic for a flow with such complexity. For this case,

a dynamic sub-grid scale model would be more appropriate.

In the following, preliminary results are presented for a free stream Mach number of Mo ,
2.46 and two different global Reynolds numbers, ReD = 30,000 and ReD = 100, 000. The
results are presented in form of isolines of instantaneous total vorticity, isolines of axial velocity,

radial velocity, pressure, density, temperature, local Mach number, and azimuthal vorticity for
the time-averaged turbulent flow field, and isolines of root-mean-square values (RMS) of axial,

radial and tangential turbulent intensities as well as axial-radial Reynolds stress < uv > and

turbulent kinetic energy (Here <> denotes the RMS value).

As a first case, the LES was applied to the previously calculated flow field at ReD = 30,000.
Figure 5.75 shows isolines of instantaneous total vorticity in the flow field. A direct comparison

with figures 5.51 through 5.53 for the filtered DNS for M, = 2.46 and ReD = 30,000 shows that

the flow field for the LES looks very similar to that of the spatially filtered DNS. However, in the
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Figure 5.75: Isolines of instantaneous total vorticity for Mo = 2.46 and PeD - 30,000 (LES).
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Figure 5.76: Isolines of axial velocity for the time-averaged flow field at Mo, = 2.46 and ReD

30,000 (LES).

DNS, structures appeared in the free shear layer, emanating from the corner. These structures

seem to be suppressed in the LES. However, structures are noticeable within the recirculating

region which are convected upstream to the base.

As for the time-averaged spatially filtered DNS, the recirculating region of the time-averaged

LES is much shorter (LR ; 2.8) than for the steady laminar calculation (LR ,: 3.5). This can be

seen in figure 5.76, where isolines of the axial velocity of the time-averaged turbulent flow field

are shown. Figures 5.77 through 5.82 show isolines of time-averaged radial velocity, pressure,

density, temperature, local Mach number, and azimuthal vorticity, respectively. Comparison

with the results for the steady flow calculation reveals, that the changes in the flow field (for

example the pressure drop downstream of the corner) are much more intense for the turbulent

flow. In addition, figure 5.78 shows that, similar to the time-average for the unsteady DNS

calculations for Mo,- = 2.46 and for Moo = 1.2, the pressure distribution along the base is

almost constant. This is in good agreement with experimental observations.
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Figure 5.77: Isolines of radial velocity for the time-averaged flow field at M, = 2.46 and

P&D = 30, 000 (LES).
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Figure 5.78: Isolines of pressure for the time-averaged flow field at M., 2.46 and ReD =30, 000

(LES). b-
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Figure 5.79: Isolines of density for the time-averaged flow field at M,, = 2.46 and ReD = 30,000

(LES).
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Figure 5.80: Isolines of temperature for the time-averaged flow field at Mo = 2.46 and ReD =

30,000 (LES).
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Figure 5.81: Isolines of local Mach number for the time-averaged flow field at M. . 2.46 and

ReD = 30,000 (LES).
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Figure 5.82: Isolines of azimuthal vorticity for the time-averaged flow field at M, = 2.46 and

ReD = 30,000 (LES).
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For further comparison with experimental results from Dutton and co-workers [see, for ex-

ample, [Herrin & Dutton (1994c)]] the RMS values of the turbulent intensities, the Reynolds

stress, and the turbulent kinetic energy are shown in figures 5.83 through 5.87, with

axial turbulence intensity, U,-= ,/< vv' ' 5,

radial turbulence intensity, a, = V< Vr v >,

tangential turbulence intensity, uo = < VoVo >,

axial-radial Reynolds stress, ar =< VX >,

turbulent kinetic energy, TKE = ½ (or2 + r2 +o 2 )
2 x e

The values of the turbulence intensities, the Reynolds stress and the TKE from the simulation

are slightly below the experimental measurements. The highest level of turbulence intensity

in the simulations can be found in the free shear layer just upstream of the stagnation point

(x ; 2.8). This finding is also in agreement with experimental observations. However, the results

in the experimental investigations by Dutton and co-workers were obtained for a global Reynolds

number ReD = 1,600, 000 and while the Reynolds number of the simulation was ReD = 30, 000.
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Figure 5.83: Isolines of axial turbulence intensity at MO, = 2.46 and PeD = 30,000 (LES).
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Figure 5.84: Isolines of radial turbulence intensity at M,, = 2.46 and ReD = 30, 000 (LES).
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Figure 5.85: Isolines of tangential turbulence intensity at Mo = 2.46 and ReD = 30,000 (LES).
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Figure 5.86: Isolines of radial turbulent Reynolds stress at M. = 2.46 and ReD = 30,000 (LES).
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Figure 5.87: Isolines of turbulent kinetic energy at M, = 2.46 and ReD = 30,000 (LES).
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Therefore, other simulations were carried out, where the global Reynolds number was raised
to ReD = 100,000 in order to determine the effect of the global Reynolds number on the flow
field behavior. Figure 5.88 shows isolines of instantaneous total vorticity for ReD = 100,000. A
comparison with figure 5.75 for ReD = 30, 000 shows that more small scale structures appear
to be present for the higher Reynolds number case than for the lower Reynolds number case.
The time-averaged flow field, which is shown in figures 5.89 through 5.95, is very similar to
the flow field at the lower Reynolds number, except that the gradients in the flow field (for
example the pressure gradient in the expansion and the recompression region) are more intense

for PRD = 100,000 .

However, at the higher Reynolds number the levels of the RMS values of the turbulence
intensities are almost identical with the levels observed in experiments, as shown in figures 5.96
through 5.100, although the Reynolds number in the experiments was considerably larger. The
averaged flow field shows a somewhat longer recirculating region than the experimental flow
field. This could be a consequence of stronger instabilities in the shear layer for the higher
Reynolds number in the experiments. On the other hand, the discrepancy could also be due to
the inadequate subgrid-scale model (Smagorinsky, with constant coefficient) and/or insufficient
resolution for the calculations of the resolved scale.
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Figure 5.88: Isolines of instantaneous total vorticity for Mc = 2.46 and ReD - 100,000 (LES).
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Figure 5.89: Isolines of axial velocity for the time-averaged flow field at M. = 2.46 and PD =

100,000 (LES).
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Figure 5.90: Isolines of radial velocity for the time-averaged flow field at M... 2.46 and

ReD = 100,000 (LES).
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Figure 5.91: Isolines of pressure for the time-averaged flow field at Mo = .2.46 and ReD -

100,000 (LES).
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Figure 5.92: Isolines of density for the time-averaged flow field at Mc = 2.46 and &eD =100, 000

(LES).
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Figure 5.93: Isolines of temperature for the time-averaged flow field at Mo . 2.46 and ReD =

100,000 (LES).
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Figure 5.94: Isolines of local Mach number for the time-averaged flow field at M" = 2.46 and

ReD = 100,000 (LES).
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Figure 5.95: Isolines of vorticity for the time-averaged flow field at M,, = 2.46 and ReD =

100,000 (LES).
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Figure 5.96: Isolines of axial turbulence intensity at M, = 2.46 and ReD - 100,000 (LES).
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Figure 5.97: Isolines of radial turbulence intensity at M,) = 2.46 and ReD = 100,000 (LES).
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Figure 5.98: Isolines of tangential turbulence intensity at M,,, = 2.46 and ReD = 100, 000 (LES).
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Chapter 6

Conclusions

A numerical method has been developed for studying the evolution and propagation of three-
dimensional structures in the laminar and the turbulent wake of axisymmetric bluff bodies with a
blunt base in supersonic flows. The method is based on the complete compressible Navier-Stokes

equations. The equations are solved in a cylindrical coordinate system using finite difference
approximations of fourth-order accuracy in the axial and radial directions. In the azimuthal
direction a pseudo-spectral method is employed. The method is explicit in time, using a fourth-

order accurate Runge-Kutta scheme for the time integration.
Axisymmetric flows have been calculated by solving the axisymmetric

Navier-Stokes equations. All axisymmetric flow fields have been found to converge to a steady
state. These flow fields are then used as initial conditions for the time-dependent three-
dimensional calculations. The evolution of three-dimensional disturbances was investigated by
disturbing the axisymmetric flow either through a blowing and suction slot near the base of the
body, or by introducing local single pulse disturbances in the flow field.

For code validation, comparison of the results for subsonic calculations was made with wa-
ter channel experiments and incompressible simulations. It was found that for the absolutely

unstable flow at a Reynolds number ReD = 1,000 the compressible calculations show similar
structures as observed in the experiments and the incompressible calculations. For a continu-
ously excited flow field, amplitude distributions of the disturbances in the wake region closely
matched those of the water channel experiments.

Direct Numerical Simulations (DNS) were carried out for three different free-stream Mach
numbers. Absolute instabilities were observed for the following Mach number - Reynolds number

combinations: M.. = 0.2 and &D = 1,000, M.. = 1.2 and ReD = 4, 000, and M., = 2.46 and
PeD = 30,000. For M, = 2.46, no absolute instability was found at lower Reynolds numbers
(ReD < 30, 000). Rather, the flow always returned to the initial axisymmetric steady state. For
the three Mach number and Reynolds number combinations shown above, however, the flow

deviated from the axisymmetric steady state and reached a state with non-periodic fluctuations.
At this point, structures appeared in the flow field, originating near the corner of the blunt base

and increasing in strength as they were convected downstream. For all Mach number - Reynolds
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number combinations the structures consist of a region of high azimuthal vorticity followed by

two regions of axial vorticity of opposite signs (indicating two counter-rotating vortices). For the

cases Moo -= 0.2 and Mo, = 1.2 the observed structures can be explained by the superposition

of two helical modes (k = 1 and k = -1). For the higher Mach number case (Mo, = 2.46),

however, the vortices are more confined within the shear layer.

The time dependent large structures have a strong influence on the global, time-averaged

flow. This can been shown by comparing the time average of the unsteady three-dimensional

flow with the initial axisymmetric steady state. For the time-averaged flow the base pressure

distribution is almost constant over the radius. In addition, the integral of the base pressure over

the entire base area is much lower for the time-averaged flow than for the steady axisymmetric

calculations. This indicates that an additional contribution of base drag is added due to the

dynamical behavior of the large structures.

For the case of Moo = 2.46 and ReD = 30,000 attempts of DNS were terminated because of

lack of resolution in the calculation. Therefore, Large-Eddy Simulations (LES) were employed for

this and higher Reynolds numbers. The results of the LES show that dominant large structures

exist in the flow, rendering the flow field highly unsteady. However, the evolution of large

oscillating structures in the shear layer emanating from the corner appears to be suppressed,
possibly due to the inadequacies of the subgrid-scale model used in the LES and/or due to

insufficient resolution for the calculation of the resolved scales. For LES at a higher global

Reynolds number (ReD = 100, 000) turbulence levels are reached that closely match those of the

experiments for much larger Reynolds numbers (ReD = 1,600,000) [see, for example, Herrin &

Dutton (1994c)].

However, other time-averaged quantities do not agree well with the experimental findings.

The length of the recirculating region for the LES calculations is LR z 2.8, whereas in the

experimental investigation it was found to be LR Z 1.3 [Herrin & Dutton (1994c)]. In addition,

the levels of the kinetic energy and of the Reynolds shear stress in the experiments reveal that

the shear layer is highly unstable immediately downstream of the corner. As mentioned above,

this instability was also observed in the preliminary DNS for ReD = 30,000, but not in the

LES calculations. Therefore, further investigations are needed to explore the influence of the

subgrid-scale model and/or the resolution used in the calculations.
In general, the results of the simulations indicate that it may be possible to influence the

base pressure (i.e. the total aerodynamic drag) of axisymmetric bodies with a blunt base by

influencing the generation and/or the dynamics of the large structures. This can be done either

by passive means (base bleed, boat-tailing, etc.) which is currently investigated by Dutton and

co-workers, or by active means (introducing controlled periodic disturbances).



Appendix A

TABLES OF PARAMETERS

Case Schwarz Al A2 A3 A4 A5 A6

M. N/A 0.2 2.46 1.2

PieD 1,000 30,000 4,000

poo[bar] N/A 1.01325 0.3207851

Tc,[K] N/A 72.0 133.0

c N/A 1,004.9157

Pr N/A 0.7

- N/A 1.4

N 209 112 223 112 640 1279 420

M 129 50 99 50 120 239 400

x1 -1.5 -0.71956 -1.5625

XN 5.0 18.15132 14.48345 5.0

rM 4.0 6.2841 6.0435 4.0

A6 0.03125 0.025 0.0125 0.025 0.004427 0.0022135 0.015625

A71 0.03125 0.025 0.0125 1 0.025 0.01 0.005 0.01

8X 1.0 0.4391 0.7 1.0

sr 1.0 0.4 0.3 1.0

At N/A 0.0014 0.00068 0.0014 0.0019 0.00096 0.0019

18o N/A 1.0 N/A

Ao N/A' 0.001 N/A

Table A.1: Parameters for axisymmetric calculations.
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T1 T2 T3 T4 T5

Moo 0.2

PeD 1,000

poo [bar] 1.01325

TOo[K] 72.0

CTP [-;- 1004.9157

Pr 0.7

7 1.4

N 112 223 112

M 50 99 50

X1 -1.5

XN 18.15132

rM 6.2841

A_ 0.025 0.0125 0.025

A7 0.025 0.0125 0.025

sx 0.4391

sr 0.4

At 0.0014 0.00068 0.0014

kmax 4 8

&D 0.0318 At-Pulse 0.159

Ampl. 0.001 0.1

Table A.2: Parameters for three-dimensional subsonic DNS calculations.
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T6 T7

MI. 1.2 2.46

ReD 4,000 30,000
poo [bar] 0.3207851

To.[K] 133.0
c1 [1 g1 1004.9157

Pr 0.7

-y 1.4

N 420 640

M 400 120

x1 -0.71956 -1.5625
XN 5.0 14.48345

rM 4.0 6.0435

Aý 0.015625 0.004427

At7  0.01 0.01

sx 1.0 0.7

Sr 1.0 0.3

At 0.0019 0.0019

kmax 4 8

RiD At-Pulse

Ampl. 0.0001

Table A.3: Parameters for three-dimensional supersonic DNS calculations.



Appendix B

FREE STREAM BOUNDARY

CONDITIONS

The boundary conditions at the free-stream boundary are discussed in detail in Harris(1995).

The equations change only slightly for the axisymmetric coordinate system used here. Depend-

ing on the free stream Mach number (M..), three different kinds of boundary conditions are

considered:

M, < 1 : subsonic boundary conditions, (B.1)

Mo, = 1.2 : characteristic boundary conditions, (B.2)

M,, = 2.46 : Thompson boundary conditions. (B.3)

The three different methods are described in detail in the next sections.

B.1 Subsonic Boundary Conditions

For subsonic flow fields, where the local Mach number at the free stream is always less than

one, the flow field is assumed to have reached nearly axisymmetric state. Therefore, derivatives

in radial direction of any flow variable are neglected. This leads to the following boundary

conditions:
a

- [v.] = 0. (B.4)

From continuity it follows that

a- [rvr] = 0. (B.5)

B.2 Characteristic Boundary Conditions

The second free-stream boundary condition (referred to hereafter as the Characteristic Boundary

Condition) is applied when the free stream Mach number is M,,- = 1.2. For steady, isentropic
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two-dimensional flow,
0- 0 (B.6)

is used for all variables, where C- is the outward-travelling characteristic direction along the

Mach angle. Corrected for flow direction, the angle of the characteristic is given at the upper

free stream by

An+l = sin- 1'( n) + tan- -' i), (B.7)

where the local Mach number is

The w-terms are not included because the flow is presumably (for each i-plane) steady and

axisymmetric, thus w = 0. The values of u, v, w, T, and p are thus found using

qi,J = 201j,- 1 
- oi,2,J-2, (B.9)

where (it1, J - 1) and (i, 2 , J- 2) are backward locations along 6, starting from (i, J). The

values at those locations are found by linear interpolation of the values at surrounding points,

e.g., with ica 5 i~c < icb,

epic l,J-1 (1 - a)qoca'J-1 + aoyicbJ-1. (B.10)

B.3 Thompson Boundary Conditions

The third free-stream boundary conditions used were suggested by Thompson [1987]. Here, the

integration is extended to the boundary itself, where the integration in the radial direction is

done in a manner which should allow disturbances to move out of, but not into the domain.

The method is described in detail in Harris (1995). It is based on the fact that information

can travel along the outgoing characteristic, but is not allowed to propagate along the incoming

characteristic. Thus, only outgoing information is allowed at the free stream boundary. There-

fore, a special treatment is required for the convective terms in the radial direction, while for

the viscous terms one-sided differences are applied for derivatives with respect to r.

This condition was found to lead to reflections of waves for subsonic and slightly supersonic

flows. Only for a free stream Mach number of M. = 2.46 no reflections could be observed.

For this reason, this boundary condition was only applied for that particular free stream Mach

number. For the Moo = 1.2 case the Characteristic Boundary Conditions were employed (see

section B.2).



Appendix C

BOUNDARY CONDITIONS AT

THE AXIS OF SYMMETRY

The boundary conditions at the symmetry axis are non-physical and appear in the numerical

scheme because of the Fourier decomposition of the flow variables in circumferential direction

(0). The conditions are independent of time. Therefore the time indices are dropped in the

following derivation.

The derivation of the boundary condition is similar to the one for incompressible computation

as shown for example in Tourbier (1991). For the cylindrical coordinate system (x, r, 0) the axis

(r = 0) forms a singularity, that needs special treatment in the numerical scheme. This results

mainly in the treatment of vectors, that are non-parallel to the axis and terms with division by

the radial coordinate (r).

a) Velocity Vector at the Axis

zV0

Vr

Vy

VYY

y

Figure C.1: Decomposition of the velocity vector within the field.

The velocity vector (vx, Vr, ev) is related to the cartesian velocity vector (VX, vy, Vz) as follows:
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VX = VX, (C.1)

Vr = Vy cos 0 + v, sin0, (C.2)

v0 = -vy sin0 + v, cos 0, (C.3)

or

VX = VX, (C.4)

vy = vr cos 0 - vo sin0, (C.5)

v, = v, sin0 + vo cos0. (C.6)

The Fourier decomposition of the velocity vector components yields

K

vx(x,r,O) = E V;,k(x,r)e kG, (C.7)
k=-K

K
Vr(xr, 0) = y v,,k(x,r)eikG, (C.8)

k=-K

K

v0(x,r,0) = V vo,k(x, r)eie. (C.9)
k=-K

z

vz

Vy y

Figure C.2: Decomposition of the velocity vector at the axis of symmetry.

At the axis (r = 0) all angles (0) belong physically to the same point (y, z) and to unique

values of vy and v,. In addition, all scalar values as well as the axial velocity component (vX)
are the same for all angles (0). Therefore for all scalar fields and the axial velocity component:

)io(x,0) #0, (C.10)

To(x, 0) #0, (C.11)
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ý0 (X, 0) 0 0, (C.12)

60(x, 0) # 0, (C.13)

v;,o(X,O0) 0 , (C.14)

and

Pk(X,0) =0, (C.15)

Tk(X, 0) =0, (C.16)

Ak(X,0) =0, (C.17)

ek(x,0) =0, (C.18)

V;,k(X, 0) = 0, (C.19)

for k # 0.

The radial and the azimuthal component of the velocity vector at the axis are represented

by

K

vr(x,0,O) = E Vr,k(x,0)[cos(kO) +isin(kO)], (C.20)
k=-K

K

vo(x,O,0) = 1 Vi,k(x,0)[cos(kO) +isin(kO)]. (C.21)
k=-K

Since the functions sin(k0) and cos(kO) build an orthogonal basis, it follows, that only the

Fourier components k = 1 and k = -1 can be non-zero when comparing the components to

equation C.5. Therefore,

vr(x,0,0) = [Vr,l (x,0) + Vr,-(X,0)] cos0[v;,l(X,0) - Vr,_(x,0)] sin0, (C.22)

vO(x,0,O) = [vj ,(x,0) + ve,-(x,0)] cosO[vj,l(x,0) + v,_l(X,O)] cos9. (C.23)

Combining these results leads to the final conditions for the radial and the azimuthal velocity

components at the symmetry axis:

Vrl(X, 0) + Vg, 1 (X, 0) = 0, (C.24)

vr,-l(X, 0) - v0^-l(X, 0) = 0. (C.25)

b) Treatment of the Division by r Near the Axis

For the division by r at the axis of symmetry the rule of l'Hopital was applied. For the

example of the term - this leads to
rr O~

limr -= -- (C.26)
r-+O r Or

This rule can be applied, as long as the numerator vanishes at r = 0.
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